[1]
Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[C] ,Proceeding of Royal Society, London, 1998: 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[2]
Flandrin, P., Rilling, F. & Goncaleves, P. 2004 Empirical mode decomposition as a . lter bank. IEEE Signal Process. Lett. 11, 112–114.
DOI: 10.1109/lsp.2003.821662
Google Scholar
[3]
Xu, Y , Liu, B., &Riemenschneider, S. Two-dimensional empirical mode decomposition by finite elements Proceeding of Royal Society, London, 2006: 1700-1716.
Google Scholar
[4]
Chen, Q., Huang, N. E., Riemenschneider, S. & Xu, Y. 2006 A B-spline approach for empirical mode decompositions. Adv. Comput. Math. 24, 171–195.
DOI: 10.1007/s10444-004-7614-3
Google Scholar
[5]
Christophe Damerval, Sylvain Meignen, and Valérie Perrier. A Fast Algorithm for Bidimensional EMD. IEEE Signal Process. Lett. Vol. 12, No. 10, October (2005).
DOI: 10.1109/lsp.2005.855548
Google Scholar
[6]
Riemenschneider, S., Liu, B., Xu, Y. & Huang, N. 2005 B-spline based empirical mode decomposition. In Hilbert–Huang transform: introduction and applications, ch 2 (ed. N. Huang& S. Shen), p.27–55. Singapore: World Scienti. c. Y.
DOI: 10.1142/9789812703347_0002
Google Scholar
[7]
J.C. Nunes. S. Guyot. E. Del'echelle. Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition [J], Machine Vision and Applications, 2005, 16: 177–188.
DOI: 10.1007/s00138-004-0170-5
Google Scholar