Numerical Simulation of Thermal/Mechanical Coupling in Laser Transmission Microjoining of PET and Titanium

Article Preview

Abstract:

Laser transmission microjoining of two dissimilar materials has become a very significant technique. In this research, a numerical method is developed using finite element technique to determine the condition of joining two dissimilar materials namely Polyethylene terepthalate (PET) and titanium. First the model is used to optimize the laser parameters like laser traveling speed and power to obtain good bonding. A good combination is achieved at the power of 8W and laser traveling speed at 150mm/min.After the verifications, the profile of residual stress of the laser microjoint has been calculated using the developed model. The residual is low near the centerline along the traveling laser beam, and a higher values is away from the centerline at the x-direction shown by the contours on the PET surface. Higher residual von Mises stress near the centerline along the traveling laser beam and the stresses reduce as the distance away from the centerline.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1118-1125

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Bauer, U.A. Russek, H. J. Herfurth, et al: SPIE , Vol. 5339(2004).

Google Scholar

[2] A. Min, G. Newaz, L. Vendra, et al: Journal of Materials Science: Materials in Medicine, Vol. 16 (2005), p.229.

Google Scholar

[3] Wang Xiao, Li Pin, Xu Zhenkai , et al: Journal of Materials Processing Technology, Vol. 210 (2010), p.1767.

Google Scholar

[4] T.U. Magmood: Wayne State University(2008).

Google Scholar

[5] H.J. Herfurth, R. Witte and S. Heinemann: SPIE , Vol. 5063(2003), p.292.

Google Scholar

[6] A.P. Dhorajiya, M.S. Mayeed, G.W. Auner, et al: Journal of Engineering Materials and Technology, Vol. 132(2010), pp.011004-1.

Google Scholar

[7] Liu Huixia, Xing An, Zhang Huizhong, et al: Chinese Journal of Lasers, Vol. 35 (2008), p.1081 (in Chinese).

Google Scholar

[8] Wang Xiao , Li Pin, Liu Huixia, et al: Chinese Journal of Lasers, Vol. 37 (2010), p.1391(in Chinese).

Google Scholar

[9] T. Mahmood , A. Mian , M.R. Amin, et al: Journal of Materials Processing Technology, Vol. 186 (2007), p.37.

Google Scholar

[10] D.G. Georgiev, R.J. Baird, G. Newaz, , et al: Applied Surface Science , Vol. 236 (2004), p.71.

Google Scholar

[11] T. Mahmood, A. Main, M.R. Amin, et al: Materials Processing Technology, Vol. 186(2007), p.37.

Google Scholar

[12] O. C . Zienkiwicz, R. L. Taylor, The Finite Element Method, McGraw-Hill, New York, Chap. 5. ( 1991).

Google Scholar

[13] Zhang Guozhi, Hu Renxi, Chen Jigang, et al, ANSYS 11. 0 Examples of Thermodynamics Finite Element Analysis Guide, Edited by Qu Caiyun Publications/Yang XI Publising, Mechanical Industry Press, Bei Jing(2007).

Google Scholar

[14] Auner, G. Herfurth, H. Mahmood, T. Mian, et al. Materials Research Society, Vol. 926(2009), p.90.

Google Scholar

[15] Information on http: /www. matweb. com.

Google Scholar