Behavior of Large-Scale Circular and Square RC Columns Confined with Carbon Fiber-Reinforced Polymer under Uniaxial Compression

Article Preview

Abstract:

Most experimental studies concerning the stress-strain behavior of concrete columns confined with carbon fiber-reinforced polymer (CFRP) focused on plain concrete columns with small section. In this study, 34 concrete columns with large-scale circular and square cross section confined with CFRP were tested under axial compression to investigate the influence of sectional dimensions, internal steel reinforcement and thickness of CFRP jackets on the stress-strain behaviors. Test results indicated that the confinement of CFRP resulted in significant increase in axial stress and strain for circular RC columns, while remarkable enhancement in axial strain but slightly in axial stress for square RC columns. The stress-strain responses of CFRP-confined square RC columns were significantly influenced by sectional dimensions and internal transverse reinforcement. The typical confinement ratio, which is obtained from studies on CFRP-confined unreinforced concrete columns with small cross sections, was not applicable for the case of large-scale square RC columns.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 163-167)

Pages:

3686-3693

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] American Concrete Institute. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures (ACI-440 2R). Farmington Hills, (2008).

DOI: 10.14359/51700867

Google Scholar

[2] Y. Xiao, H. Wu. J. Mater. Civ. Eng. Vol. 12 (2000), pp.139-146.

Google Scholar

[3] L. Lam, J. G. Teng. Constr. Build. Mater. Vol. 17 (2003), pp.471-489.

Google Scholar

[4] T. Jiang, J. G. Teng. Eng. Struct. Vol. 29 (2007), pp.2968-2986.

Google Scholar

[5] J. G. Teng, T. Jiang, L. Lam, Y. Z. Luo. J. Compos. Constr. Vol. 13 (2009), pp.269-278.

Google Scholar

[6] O. Challal, M. Shahawy, M. Hassan. J. Compos. Constr. Vol. 7 (2003), pp.659-680.

Google Scholar

[7] O. Chaallal, M. Hassan, L. B. Michel. J. Compos. Constr. Vol. 10 (2006), pp.4-12.

Google Scholar

[8] M. N. Youssef, M. Q. Feng, A. S. Mosallam. Composites: Part B. Vol. 38 (2007), pp.614-628.

Google Scholar

[9] G. Wu, Z. S. Wu, Z. T. Lu. Constr. Build. Mater. Vol. 21 (2007), P. 1107-1121.

Google Scholar

[10] T. Ozbakkaloglu, D. J. Oehlers. J. Compos. Constr. Vol. 12 (2008), pp.469-477.

Google Scholar

[11] A. Ilki, O. Peker, E. Karamuk, C. Demir, N. Kumbasar. J. Mater. Civ. Eng. Vol. 20 (2008), P. 169-188.

DOI: 10.1061/(asce)0899-1561(2008)20:2(169)

Google Scholar

[12] L. M. Wang, Y. F. Wu. Eng. Struct. Vol. 30 (2008), pp.493-505.

Google Scholar

[13] T. Turgay, H. O. Koksal, Z. Polat, C. Karakoc. Mater. and Design. Vol. 30 (2009), pp.3243-3251.

Google Scholar

[14] R. Abbasnia, H. Ziaadiny. Eng. Struct. Vol. 32 (2010), pp.648-655.

Google Scholar