[1]
Shi Fei, Dong Xianghuai. Resin Fow Simulation in RTM and Its Significance to Mould Design In Chinese [J]. Aeronautical Manufacturing Technology, 2009, 20: 51-50.
Google Scholar
[2]
Gao Yantao, Li Wei, Luo Yongkang. Permeability of Thick Lay-up of Glass-fiber Fabric in VARTM Process and Process Optimization In Chinese [J]. FRP/CM, 2009, 6: 54-57.
Google Scholar
[3]
Kong Jinfeng, Zhang Yanfei, Liu Yaqing. Research in Composite RTM Molding Process Parameters In Chinese [J]. Application of Engineering Plastics, 2009, 37(4): 42-44.
Google Scholar
[4]
Yang Junying, Numerical Simulation of Resin Transfer Molding Processes In Chinese [D]. Press of Shan Dong University, (2007).
Google Scholar
[5]
Feng Wu. Study on the Defects Formation Mechanism and Control Methods in Resin Transfer Molding In Chinese [D]. Press of Wu Han University of Technology, (2005).
Google Scholar
[6]
Bu Jianhui, Numerical Simulation of the Process of the Resin Transfer Molding Technology In Chinese [D]. Press of Zheng Zhou University, (2006).
Google Scholar
[7]
Feng Wu, Wang Jihui, Meng Zhihua, etal. The analysis of Void Formation During Resin-transfer Molding Process In Chinese [J]. Journal of Wu Han University of Technology, 2004, 26(11): 5-7.
Google Scholar
[8]
Zhang Yanfei, Liu Yaqing, Du Ruikui, etal. Study Development of Mechanism for Void Formation and Elimination During RTM Processing In Chinese [J]. Aerospace Material Technology, 2006, 5: 7-11.
Google Scholar
[9]
Wu Xiaoqing, Li Jialu, Chen Zupang. Influence of Finite Element Mesh on Mold-filling Simulation in RTM In Chinese [J]. Material Engineering, 2007, 5: 11-18.
Google Scholar
[10]
Hu Meixie, Guo Xiaodong, Wang Ning. Technology of Resin Transfer Molding in our Country In Chinese [J]. Hi-Tech Fiber & Application, 2006, 31(2): 29-33.
Google Scholar
[11]
Aydin Nabovati, Edward w. Llewellin, Antonio C.M. Sousa. A general mold for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method [J]. Composites: Part A, 2009, 40: 860-869.
DOI: 10.1016/j.compositesa.2009.04.009
Google Scholar
[12]
B. Gourichon, C. Binetruy, P. Krawczak. A new numerical procedure to predict dynamic void content in liquid composite molding [J]. Composites: Part A, 2006, 37: 1961-(1969).
DOI: 10.1016/j.compositesa.2005.12.017
Google Scholar
[13]
Francois Trochu, Edu Ruiz, Vincent Achim, etal. Advanced numerical simulation of liquid composite molding for process analysis and optimization [J]. Composites: Part A, 2006, 37: 890-902.
DOI: 10.1016/j.compositesa.2005.06.003
Google Scholar
[14]
T. Staffan Lundström, Vilnis Frishfelds, Andris Jakovics. Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry [J]. Composites: Part A, 2010, 41: 83-92.
DOI: 10.1016/j.compositesa.2009.05.012
Google Scholar
[15]
Vilnis Frishfelds, T. Staffan Lundström, Andris Jakovics. Bubble motion through non-crimp fabrics during composites manufacturing [J]. Composites: Part A, 2008, 39: 243-251.
DOI: 10.1016/j.compositesa.2007.10.020
Google Scholar
[16]
Mohsan Haider, Pascal Hubert, Larry Lessard. Cure shrinkage characterization and molding of a polyester resin containing low profile additives [J]. Composites: Part A, 2007, 38: 994-1009.
DOI: 10.1016/j.compositesa.2006.06.020
Google Scholar
[17]
Boris Gourichon, Mylène Deléglise, Christophe Binetruy, etal. Dynamic void content prediction during radial injection in liquid composite molding[J]. Composites: Part A, 2008, 39: 46-55.
DOI: 10.1016/j.compositesa.2007.09.008
Google Scholar
[18]
J.S.U. Schell, M. Deleglise, C. Binetruy, etal. Numerical prediction and experimental characterization of meso-scale-voids in liquid composite moulding [J]. Composites: Part A, 2007, 38: 2460-2470.
DOI: 10.1016/j.compositesa.2007.08.005
Google Scholar
[19]
Akbar shojaei. Numerical simulation of three-dimensional flow and anlysis of filling process in compression resin transfer molding [J]. Composites: Part A, 2006, 37: 1434-1450.
DOI: 10.1016/j.compositesa.2005.06.021
Google Scholar
[20]
E. Ruiz, V. Achim, S. Soukane, etal. Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molding composites [J]. Composites Science and Technology, 2006, 66: 475-486.
DOI: 10.1016/j.compscitech.2005.06.013
Google Scholar
[21]
S. Sequeira Tavares, V. Michaud, J. -A.E. Månson. Through thickness air permeability of prepregs during cure [J]. Composites: Part A, 2009, 40: 1587-1596.
DOI: 10.1016/j.compositesa.2009.07.004
Google Scholar
[22]
Daniel Z. Turner, Keith D. Hjelmstad, James M. LaFave. Three-dimensional flow visualization experiment of an RTM injection for a GFRP cuff mold [J]. Composite Structures, 2006, 76: 352-361.
DOI: 10.1016/j.compstruct.2005.05.008
Google Scholar
[23]
Aydin Nabovati, Edward W. Llewellin, Antonio C.M. Sousa. Through-thickness permeability prediction of three-dimensional multifilament woven fabrics [J]. Composites: Part A, 2010, 41: 453-463.
DOI: 10.1016/j.compositesa.2009.11.011
Google Scholar
[24]
V.C.S. Chandrasekaran, S.G. Advani, M.H. Santare. Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites [J]. Carbon, 2010, 48: 3692-3699.
DOI: 10.1016/j.carbon.2010.06.010
Google Scholar
[25]
Justin B. Alms, James L. Glancey, Suresh G. Advani. Mechanical properties of composite structures fabricated with the vacuum induced preform relaxation process [J]. Composite Structures, 2010, 92: 2811–2816.
DOI: 10.1016/j.compstruct.2010.04.007
Google Scholar
[26]
S. Terekhina, S. Fouvry, M. Salvia, etal. An indirect method based on fretting tests to characterize the elastic properties of materials: Application to an epoxy resin RTM6 under variable temperature conditions [J]. Wear, 2010, 269: 632-637.
DOI: 10.1016/j.wear.2010.06.008
Google Scholar
[27]
Y. Mahadik, S.R. Hallett. Finite element modelling of tow geometry in 3D woven fabrics [J]. Composites: Part A, 2010, 41: 1192–1200.
DOI: 10.1016/j.compositesa.2010.05.001
Google Scholar
[28]
Mehmet Karahan, Stepan V. Lomov, Alexander E. Bogdanovich, etal. Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite [J]. Composites: Part A, 2010, 41: 1301–1311.
DOI: 10.1016/j.compositesa.2010.05.014
Google Scholar
[29]
Y. Mahadik, K.A. Robson Brown, S.R. Hallett. Characterisation of 3D woven composite internal architecture and effect of compaction [J]. Composites: Part A, 2010, 41: 872–880.
DOI: 10.1016/j.compositesa.2010.02.019
Google Scholar
[30]
Prabhas Bhat, Justin Merotte, Pavel Simacek, Suresh G. Advani. Process analysis of compression resin transfer molding [J]. Composites: Part A, 2009, 40: 431–441.
DOI: 10.1016/j.compositesa.2009.01.006
Google Scholar
[31]
Pavel Simacek, Dirk Heider, John W. Gillespie Jr., etal. Post-filling flow in vacuum assisted resin transfer molding processes: Theoretical analysis [J]. Composites: Part A, 2009, 40: 913–924.
DOI: 10.1016/j.compositesa.2009.04.018
Google Scholar
[32]
Justin Merotte, Pavel Simacek, Suresh G. Advani. Resin flow analysis with fiber preform deformation in through thickness direction during Compression Resin Transfer Molding [J]. Composites: Part A, 2010, 41: 881–887.
DOI: 10.1016/j.compositesa.2010.03.001
Google Scholar
[33]
Chensong Dong. A modified rule of mixture for the vacuum-assisted resin transfer moulding process simulation [J]. Composites Science and Technology, 2008, 68: 2125–2133.
DOI: 10.1016/j.compscitech.2008.03.019
Google Scholar
[34]
Bekir Yenilmez, E. Murat Sozer. A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding [J]. Composites: Part A, 2009, 40: 476–489.
DOI: 10.1016/j.compositesa.2009.01.014
Google Scholar