[1]
Zhao S Z, zhao J. Quadratic stability of switched nonlinear systems in block-triangular form[J]. Acta Automatic Sinica, 2005, vol31(4)pp: 631-633.
Google Scholar
[2]
Mancilla-Aguilar J L. A condition for the stability of switched nonlinear systems[J]. IEEE Trans on Automatic Control, 2000,vol. 45(11)pp:2077-(2079).
DOI: 10.1109/9.887629
Google Scholar
[3]
Xie W X, Wen C Y, Li Z G. input-to-state stabilization of switched nonlinear systems[J]. IEEE Trans on Automatic Control, 2001, vol. 46(7)pp:1111-1116.
DOI: 10.1109/9.935066
Google Scholar
[4]
Zhang L J, Liu S, Lan H. On stability of switched homogeneous nonlinear systems[J]. Mathematical Analysis and Applycations, 2007, vol334. pp: 414-430.
Google Scholar
[5]
Margaliot M, Liberzon D. Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions[J]. Systems and Control. Letters, 2006, vol55(5)pp: 8-16.
DOI: 10.1016/j.sysconle.2005.04.011
Google Scholar
[6]
El_Farral N H, Mhaskar P, Christofides P D. Output feedback control of switched nonlinear systems using multiple Lyapunov functions[J]. Systems and Control Letters, 2005, vol54(5)pp: 1163-1182.
DOI: 10.1016/j.sysconle.2005.04.005
Google Scholar
[7]
Lu Z Q, Su H Y, ChU J. New absolute stability and stabilizations conditions for a class of Lurie uncertain time-delay systems. [J]. Journal of Zhejiang university(Engineering Science), 2004, vol38(2)pp: 130-134.
Google Scholar
[8]
Zhao J, Dimirovski G M. Quadratic stability of A class of switched nonlinear systems [J]. IEEE Trans on Automatic Control, 2004, vol49(4)pp: 574-578.
DOI: 10.1109/tac.2004.825611
Google Scholar
[9]
FANG Z M, XIANG Z R, CHEN Q W. robust stabilization anaysis of a class of switched Lurie systems with parameter uncertainty. [J]. Journal of Nanjing University of Science and Technology(Natural Science), 2009, vol 33(2): 153-155.
Google Scholar