Preparation and Characterization of Electrospun Silk Fibroin-Based Tubular Scaffolds

Article Preview

Abstract:

Artificial nerve conduits (NC) can be used as an alternative to autologous nerve grafts to enhance the repair of small nerve gaps. Many natural and synthetic biomaterials have been processed to be tubular scaffolds. However, current NC lack adequate molecular and structural functionalities. Thus, we prepared silk fibroin (SF)-based nanofibrous tubular scaffolds (inner diameter=1.5 mm) for nerve repair. The Bombyx mori silk fibroin was firstly dissolved in hexafluoroisopropanol (HFIP), and then was electrospun to be nanofibrous silk fibroin tube which topographically functionalized with aligned and non-aligned SF nanofibers. Effects of electrospinning parameters (including collection distance, rotational speed and translational speed) on the micro-morphology of SF tube were investigated. The nanofibers orientation in SF tube affects the mechanical property of SF tube. The results suggest that this tubular scaffold shows promising application in nerve tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 175-176)

Pages:

197-201

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Vepari, and D. L. Kaplan: Prog. Polym. Sci. Vol. 32 (2007), p.991.

Google Scholar

[2] G. H. Altman, R. L. Horan, H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan: Biomaterials Vol. 23 (2002), p.4131.

DOI: 10.1016/s0142-9612(02)00156-4

Google Scholar

[3] C.M. Li, C. Vepari, H.J. Jin, H.J. Kim and D.L. Kaplan: Biomaterials Vol. 27 (2006), p.3115.

Google Scholar

[4] Y. Yang, F. Ding, J. Wu, W. Hu, W. Liu, J. Liu and X.S. Gu: Biomaterials Vol. 28 (2007), p.5526.

Google Scholar

[5] Y. Yang, F. Ding, J. Wu, W. Hu, W. Liu, J. Liu and X.S. Gu: Biomaterials Vol. 28 (2007), p.5526.

Google Scholar

[6] J.D. Roh, G.N. Nelson, M.P. Brennan, T.L. Mirensky, T. Yi, T.F. Hazlett, G. Tellides, A.J. Sinusas, J.S. Pober, W.M. Saltzman, T.R. Kyriakides and C.K. Breuer: Biomaterials Vol. 29 (2008), p.1454.

DOI: 10.1016/j.biomaterials.2007.11.041

Google Scholar

[7] B.A. Harley, A.Z. Hastings, I.V. Yannas and A. Sannino: Biomaterials Vol. 27 (2006), p.866.

Google Scholar

[8] J. Matthews, G. Wnek, D.G. Simpson and G.L. Bowlin: Biomacromolecules Vol. 3 (2002), p.232.

Google Scholar

[9] J. Stitzel, L. Liu, S.J. Lee, M. Komura, J. Berry, S. Soker, G. Lim, M. Van Dyke, R. Czerw, J.J. Yoo and A. Atala: Biomaterials Vol. 27 (2006), p.1088.

DOI: 10.1016/j.biomaterials.2005.07.048

Google Scholar

[10] C.Y. Xu, R. Inai, M. Kotaki and S. Ramakrishna: Biomaterials Vol. 25 (2004), p.877.

Google Scholar

[11] J. Zhou, C.B. Cao and X.L. Ma: Int. J. Biol. Macromol. Vol. 45 (2009), p.504.

Google Scholar

[12] Z.M. Huang, Y.Z. Zhang and M. Kotaki: Compos Sci Technol Vol. 63 (2003), p.2223. S. D.

Google Scholar

[13] S. Wang, Y. Zhang, G. Yin, H. Wang and Z.H. Dong: J Appl Polym Sci Vol. 113 (2009), p.2675.

Google Scholar

[14] S. Zarkoob, R.K. Eby, D.H. Reneker, S.D. Hudson, D. Ertley and W.W. Adams: Polymer Vol. 45 (2004), p.3973.

DOI: 10.1016/j.polymer.2003.10.102

Google Scholar

[15] F. Zhang, B.Q. Zuo, H.X. Zhang and L. Bai: Polymer Vol. 1 (2009), p.279.

Google Scholar