Depolarization Behavior of Lead-Free (Bi1/2Na1/2)TiO3-Based Ferroelectrics with Different Li+ Introduction Sources

Article Preview

Abstract:

Lead-free 0.85(Bi1/2Na1/2)TiO3- 0.10(Bi1/2K1/2)TiO3- 0.05BaTiO3 (BNKB) ceramics with Li2CO3 or (Bi1/2Li1/2)TiO3 (BLT) added were fabricated by a conventional solid oxide route. The XRD analysis indicates that Li2CO3 introduction leads to the increasing of fraction of tetragonal phase while the BLT introduction does in a reverse tendency. Meanwhile, the depolarization temperature Td of Li2CO3-added BNKB ceramics was enhanced obviously while that of BLT-added BNKB ceramics went down as the addition amount increased. The similarity in variation of the phase structure and the Td of BNKB ceramics reveals the nature of Li+ introduction source on phase structure in BNKB ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Smolenskii, V. Isupov, A. Agranovskaya, et al.: Sov. Phys. -Solid State Vol. 2 (1961), p.2651.

Google Scholar

[2] H. Ishii, H. Nagate, T. Takenaka: Jpn. J. Appl. Phys. Vol. 40 (2001), p.5660.

Google Scholar

[3] T. Takenaka, K. Maruyama, and K. Sakata: Jpn. J. Appl. Phys. Vol. 30 (1991), p.2236.

Google Scholar

[4] K. Sakata and Y. Masuda: Ferroelectrics Vol. 7 (19741), p.34.

Google Scholar

[5] A. Sasaki, T. Chiba, Y. Mamuya, and E. Otsuki: Jpn. J. Appl. Phys. Vol. 38 (1999), p.5564.

Google Scholar

[6] X.X. Wang, X.G. Tang, and H.L.W. Chan: Appl. Phys. Lett. Vol. 85 (2004), p.91.

Google Scholar

[7] H. Nagata, M. Yoshida, Y. Makiuchi, et al.: Jpn. J. Appl. Phys. Vol. 42 (2003), p.7401.

Google Scholar

[8] J. Shieh, K.C. Wu, C.S. Chen: Acta Mater. Vol. 55 (2007), p.3081.

Google Scholar

[9] C.S. Tu, I.G. Siny, and V.H. Schmidt: Phys. Rev. B Vol. 49 (1994), p.11550.

Google Scholar

[10] H.C. Hu, M.K. Zhu, F.Y. Xie, et al.: J. Am. Ceram. Soc. Vol. 92 (2009), p. (2039).

Google Scholar

[11] Q. Xu, M. Chen, W. Chen, et al.: Acta Mater. Vol. 56 (2008), p.642.

Google Scholar

[12] X.P. Jiang, Y.Y. Zheng, F.L. Jiang, et al.: Chin. Phys. Lett. Vol. 24 (2007), p.3257.

Google Scholar

[13] S. H. Choy, X. X. Wang, H. L. W. Chan, C. L. Choy: Appl. Phys. A Vol. 89 (2007), p.775.

Google Scholar

[14] X.M. Chen, Y.W. Liao, L.J. Mao, et al.: Phys. Status Solidi A Vol. 206 (2009), p.1616.

Google Scholar

[15] D.M. Lin, C.G. Xu, Q.J. Zheng, et al.: J Mater Sci: Mater Electron. Vol. 20 (2009), p.393.

Google Scholar

[16] C.S. Tu, S.H. Huang, C.S. Ku, et al.: Appl. Phys. Lett. Vol. 96 (2010), p.062903.

Google Scholar

[17] M.K. Zhu, H. C. Hu, N. Lei, et al.: Appl. Phys. Lett. Vol. 94 (2009), p.182901.

Google Scholar

[18] Y. Hiruma, H. Nagata and T. Takenaka: Jpn. J. Appl. Phys. Vol. 45 (2006), p.7409.

Google Scholar

[19] D.R. Lide: CRC Handbook of Chemistry and Physics. (2003).

Google Scholar

[20] B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin: J. Euro. Ceram. Soc. Vol. 22 (2002), p.2115.

Google Scholar