[1]
Kathryn E, Wellen , Gokhan S, etal. Inflammation, stress and diabetes[J]. J Clin invest, 2005, 115: 1111-1119.
Google Scholar
[2]
Hansson GK, Libby P, Schonbeck U, etal. Innate and adaptive immunity in the pathogenesis of atherosclerosis[J]. Circ Res, 2002, 91: 281-291.
Google Scholar
[3]
Sowers JR, Stump CS. Insights into the biology of diabetic vascular disease: what's new?[J]. Am J Hypertens, 2004, 17: 2-6.
Google Scholar
[4]
Oude Nijhuis CS, Vellenga E, Daenen SM, etal. Endothelial cells are main producers of interleukin-8 through Toll-like receptor 2 and 4 signaling during bacterial infection in leukopenic cancer patients[J]. Clin Diagn Lab Immunol, 2003, 10: 558-563.
DOI: 10.1128/cdli.10.4.558-563.2003
Google Scholar
[5]
Goraya TY, Leibson CL, Palumbo PJ , et al. Coronary atherosclerosis in diabetes mellitus. A population-based autopsy study [J]. J Am Coll Cardiol, 2002, 40: 946-953.
Google Scholar
[6]
Ledru F, Ducimetiere P, Battaglia S, et al. New diagnostic criteria for diabetes and coronary artery disease: Insights from an angiographic study[J]. J Am Coll Cardiol, 2001, 37: 1543-1550.
DOI: 10.1016/s0735-1097(01)01183-4
Google Scholar
[7]
Forbes JM, Yee LT, Thallas V, etal. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis[J]. Diabetes, 2004, 53: 1813-1823.
DOI: 10.2337/diabetes.53.7.1813
Google Scholar
[8]
Veiraiah A. Hyperglycemia, lipoprotein glycation, and vascular disease[J]. Angiology, 2005, 56: 431-487.
DOI: 10.1177/000331970505600411
Google Scholar
[9]
Libby P. Inflammation in atherosclerosis [J]. Nature, 2002, 420: 868-874.
Google Scholar
[10]
Bucciarelli LG, Wendt T, Qu W, etal. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E null mice [J]. Circulation, 2002, 106: 2 827-2835.
DOI: 10.1161/01.cir.0000039325.03698.36
Google Scholar
[11]
Joy SV, Scates AC, Bearelly S, etal. Ruboxistaurin, a protein kinase C beta inhibitor, as an emerging treatment for diabetes microvascular complications [J]. Ann Pharmacol Ther, 2005, 39: 1693-1699.
DOI: 10.1345/aph.1e572
Google Scholar
[12]
Sonta T, Inoguchi T, Tsubouchi H, etal. Evalution of oxidative stress in diabetic animals by in vivo electron spin resonance measurement role of protein kinase C [J]. Diab Res Clin Prac, 2004, 66: 109-113.
DOI: 10.1016/j.diabres.2004.05.008
Google Scholar
[13]
Scivittaro V, Ganz MB, Weiss MF. AGE induce oxidative stress and activate protein kinase C-beta (Ⅱ) in neonatal mesangial cells [J]. Am J Physiol Renal Physiol, 2000, 278: 676-683.
DOI: 10.1152/ajprenal.2000.278.4.f676
Google Scholar
[14]
Song MJ, Kim KH, Yoon JM, etal. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes[J]. Biochem Biophys Res Commun, 2006, 346: 739-745.
DOI: 10.1016/j.bbrc.2006.05.170
Google Scholar
[15]
Pirie FJ, Pegoraro R, Motala AA, etal. Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes[J]. Tissue Antigens, 2005, 66: 125-130.
DOI: 10.1111/j.1399-0039.2005.00454.x
Google Scholar
[16]
Santin I, Bilbao JR, de Nanclares GP, etal. No association of TLR2 and TLR4 polymorphisms with type I diabetes mellitus in the Basque population[J]. Ann N Y Acad Sci, 2006, 1079: 268-272.
DOI: 10.1196/annals.1375.040
Google Scholar
[17]
Schreyer SA, Vick CM, Boeuf RC, etal. Loss of lymphotoxi-α but not tumor necrosis factor-α reduces atherosclerosis in mice[J]. J Biol Chem, 2002, 277: 12364-12368.
DOI: 10.1074/jbc.m111727200
Google Scholar
[18]
Rudkin JS, Stehouwer C, Coppack SW, etal. C-reactive protein in healthy subjects-associations with obesity insulin resistance and endothelial dysfunction . A potential role for cytokines originating from adipose tissue[J]. Art Thromb Vasc Biol, 1999, 19: 972-978.
DOI: 10.1161/01.atv.19.4.972
Google Scholar
[19]
Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment[J]. Immunity, 1997, 6: 13-20.
DOI: 10.1016/s1074-7613(00)80334-9
Google Scholar
[20]
Steven E, Shoelson, Jongsoon Lee, et al. Inflammation and insulin resistance [J]. J Clin Invest. 2006, 116: 1793–1801.
Google Scholar
[21]
Sherry CL, O'Connor JC, Kramer JM, etal. Augmented lipopolysaccharide-induced TNF-alpha production by peritoneal macrophages in type 2 diabetic mice is dependent on elevated glucose and requires p.38 MAPK. J Immunol. 2007, 15; 178: 663-70.
DOI: 10.4049/jimmunol.178.2.663
Google Scholar