The Effect of Lightning Strikes on Bismaleimide Composites by Dynamic Mechanical Analysis

Article Preview

Abstract:

In this paper, a new method that has shown significant potential to characterize lightning strikes damage which is couple with dynamic mechanical analysis. The composite samples used in this work are based on carbon fiber/bismaleimide system. The analysis of the dynamic mechanical data demonstrate the glass transition temperature of the composites increased as a function of increasing lightning current , simultaneity with the presence ofpotential damage, whichare result in higher network cross-link density and the incipent degradation of the polymer matrix.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 179-180)

Pages:

449-454

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Boeing 787 Dreamliner Will Provide New Solutions for Airlines, Passengers. Fast Facts: Boeing 787. October 14, 2007, http: /www. boeing. com/commercial/787family/background. html.

DOI: 10.1016/s0034-3617(08)70118-8

Google Scholar

[2] Frame, B. J., et al, Composite Heat Damage, Part 1. Mechanical Testing of IM6/3501-06 Laminates, Part 2. Nondestructive Evaluation Studies of IM6/3501-06 Laminates, ORNL/ATD-33, Oak Ridge National Laboratory, Oak Ridge, TN. (1990).

DOI: 10.2172/940219

Google Scholar

[3] G. A. Matzkanin, and G. P. Hansen Heat Damage in Graphite Epoxy Composites: Degradation, Measurement and Detection: A State-of-the-Art Report, NTIAC. (1998).

Google Scholar

[4] J. Fan, X. Hu, C.Y. Yue, Static and Dynamic Mechanical Properties of Modified and Cyanate Ester Interpenetrating Polymer Networks. J. Appl. Polym. Sci. Vol. 2000 (2003), p.88.

DOI: 10.1002/app.11969

Google Scholar

[5] Y. Yan, X. Shi, J. Liu, T. Zhao, Y. Yu, Thermosetting Resin System Based on Novolak and Bismaleimide for Resin-transfer Molding. J. Appl. Polym. Sci. Vol. 1651 (2002), p.83.

DOI: 10.1002/app.10073

Google Scholar

[6] X. Hu, X. Shi, J. Liu, T. Zhao, Y. Yu, Reological Study of Cross-linking and Gelation in Bismaleimide/Cyanate Ester Interpenetrating Polymer Network. J. Appl. Polym. Sci. Vol. 2437 (2001), p.80.

DOI: 10.1002/app.1350

Google Scholar

[7] C.S. Wang, H.J. Hwang, Investigation of Bismaleimide Containing Naphthalene Unit . II. Thermal Behavior and Properties of Polymer. J. Polym. Sci., Part A: Polymer chemistry. Vol/1493(1996), p.34.

DOI: 10.1002/(sici)1099-0518(199606)34:8<1493::aid-pola13>3.0.co;2-3

Google Scholar

[8] X. Hu, J. Zhang, Y.C. Yue, Q. Zhao, Thermal and Morphological Properties of Polyetherimide Modified Bismaleimide Resins. High Perform. Polym. Vol. 419 (2000), p.12.

DOI: 10.1088/0954-0083/12/3/305

Google Scholar

[9] C. Gouri, C.P. Regllunadhan Nair, R. Ramaswamy, Adhesive Characteristics of Alderene Adducts of Diallyl Bisphenol a Novolac and Bisphenol A Bismaleimide. High Perfom. Polym. Vol. 497(2000), p.12.

DOI: 10.1088/0954-0083/12/4/305

Google Scholar

[10] J.L. Hopewell, G.A. George, D.J.T. Hill, Quantitative Analysis of Bismaleimide Diamine Thermosets Using Near Infrared Spectroscopy. Polymer. Vol. 8221 (2000), p.41.

DOI: 10.1016/s0032-3861(00)00198-1

Google Scholar

[11] Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. A Local Theory of Heating in Cross-Ply Carbon Fiber Thermoplastic Composites by Magnetic Induction., Polym. Eng. Sci., Vol. 357(1992), p.32.

DOI: 10.1002/pen.760320509

Google Scholar

[12] Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. A Model to Predict the Planar Electrical Potential Distribution in Cross-Ply Carbon-Fiber Composites Subjected to Alternating Magnetic Fields., Composites Science and Technology, Vol. 49(1993).

DOI: 10.1016/0266-3538(93)90023-a

Google Scholar

[13] Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. A Model to Predict the Through-Thickness Distribution of Heat Generation in Carbon-Fiber Composites Subjected to Alternating Magnetic Fields., Composites Science and Technology, Vol. 55(1995).

DOI: 10.1016/0266-3538(95)80024-7

Google Scholar

[14] M. S. P. Shaffer, A. H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, , Adv. Mater ., Vol. 11(1999), p.937.

DOI: 10.1002/(sici)1521-4095(199908)11:11<937::aid-adma937>3.0.co;2-9

Google Scholar

[15] S. Sprenger, C. Eger, A.J. Kinloch, A.C. Taylor, J.H. Lee and D. Egan. Adhaesion Kleben Dichten, Vol. 3 (2003), p.24–28.

DOI: 10.1007/bf03255623

Google Scholar

[16] R. F. Boyer, J. Polym. Sci., Symposium, Vol. 50 (1975), p.189.

Google Scholar

[17] G. Groeninckx, H. Berghmans, G. Smets, J. Polym. Sci., Polym. Phys., Vol. 14(1976), p.591.

Google Scholar

[18] G. Groeninckx, H. Reynaers, H. Berghmans, G. Smets, J. Polym. Sci., Polym. Phys, Vol. 18 (1980), p.1325.

Google Scholar

[19] F. Fontaine, J. Ledent, G. Groeninckx, H. Reynaers, Polymer, Vol. 23 (1982), p.185.

Google Scholar