[1]
Boeing 787 Dreamliner Will Provide New Solutions for Airlines, Passengers. Fast Facts: Boeing 787. October 14, 2007, http: /www. boeing. com/commercial/787family/background. html.
DOI: 10.1016/s0034-3617(08)70118-8
Google Scholar
[2]
Frame, B. J., et al, Composite Heat Damage, Part 1. Mechanical Testing of IM6/3501-06 Laminates, Part 2. Nondestructive Evaluation Studies of IM6/3501-06 Laminates, ORNL/ATD-33, Oak Ridge National Laboratory, Oak Ridge, TN. (1990).
DOI: 10.2172/940219
Google Scholar
[3]
G. A. Matzkanin, and G. P. Hansen Heat Damage in Graphite Epoxy Composites: Degradation, Measurement and Detection: A State-of-the-Art Report, NTIAC. (1998).
Google Scholar
[4]
J. Fan, X. Hu, C.Y. Yue, Static and Dynamic Mechanical Properties of Modified and Cyanate Ester Interpenetrating Polymer Networks. J. Appl. Polym. Sci. Vol. 2000 (2003), p.88.
DOI: 10.1002/app.11969
Google Scholar
[5]
Y. Yan, X. Shi, J. Liu, T. Zhao, Y. Yu, Thermosetting Resin System Based on Novolak and Bismaleimide for Resin-transfer Molding. J. Appl. Polym. Sci. Vol. 1651 (2002), p.83.
DOI: 10.1002/app.10073
Google Scholar
[6]
X. Hu, X. Shi, J. Liu, T. Zhao, Y. Yu, Reological Study of Cross-linking and Gelation in Bismaleimide/Cyanate Ester Interpenetrating Polymer Network. J. Appl. Polym. Sci. Vol. 2437 (2001), p.80.
DOI: 10.1002/app.1350
Google Scholar
[7]
C.S. Wang, H.J. Hwang, Investigation of Bismaleimide Containing Naphthalene Unit . II. Thermal Behavior and Properties of Polymer. J. Polym. Sci., Part A: Polymer chemistry. Vol/1493(1996), p.34.
DOI: 10.1002/(sici)1099-0518(199606)34:8<1493::aid-pola13>3.0.co;2-3
Google Scholar
[8]
X. Hu, J. Zhang, Y.C. Yue, Q. Zhao, Thermal and Morphological Properties of Polyetherimide Modified Bismaleimide Resins. High Perform. Polym. Vol. 419 (2000), p.12.
DOI: 10.1088/0954-0083/12/3/305
Google Scholar
[9]
C. Gouri, C.P. Regllunadhan Nair, R. Ramaswamy, Adhesive Characteristics of Alderene Adducts of Diallyl Bisphenol a Novolac and Bisphenol A Bismaleimide. High Perfom. Polym. Vol. 497(2000), p.12.
DOI: 10.1088/0954-0083/12/4/305
Google Scholar
[10]
J.L. Hopewell, G.A. George, D.J.T. Hill, Quantitative Analysis of Bismaleimide Diamine Thermosets Using Near Infrared Spectroscopy. Polymer. Vol. 8221 (2000), p.41.
DOI: 10.1016/s0032-3861(00)00198-1
Google Scholar
[11]
Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. A Local Theory of Heating in Cross-Ply Carbon Fiber Thermoplastic Composites by Magnetic Induction., Polym. Eng. Sci., Vol. 357(1992), p.32.
DOI: 10.1002/pen.760320509
Google Scholar
[12]
Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. A Model to Predict the Planar Electrical Potential Distribution in Cross-Ply Carbon-Fiber Composites Subjected to Alternating Magnetic Fields., Composites Science and Technology, Vol. 49(1993).
DOI: 10.1016/0266-3538(93)90023-a
Google Scholar
[13]
Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. A Model to Predict the Through-Thickness Distribution of Heat Generation in Carbon-Fiber Composites Subjected to Alternating Magnetic Fields., Composites Science and Technology, Vol. 55(1995).
DOI: 10.1016/0266-3538(95)80024-7
Google Scholar
[14]
M. S. P. Shaffer, A. H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, , Adv. Mater ., Vol. 11(1999), p.937.
DOI: 10.1002/(sici)1521-4095(199908)11:11<937::aid-adma937>3.0.co;2-9
Google Scholar
[15]
S. Sprenger, C. Eger, A.J. Kinloch, A.C. Taylor, J.H. Lee and D. Egan. Adhaesion Kleben Dichten, Vol. 3 (2003), p.24–28.
DOI: 10.1007/bf03255623
Google Scholar
[16]
R. F. Boyer, J. Polym. Sci., Symposium, Vol. 50 (1975), p.189.
Google Scholar
[17]
G. Groeninckx, H. Berghmans, G. Smets, J. Polym. Sci., Polym. Phys., Vol. 14(1976), p.591.
Google Scholar
[18]
G. Groeninckx, H. Reynaers, H. Berghmans, G. Smets, J. Polym. Sci., Polym. Phys, Vol. 18 (1980), p.1325.
Google Scholar
[19]
F. Fontaine, J. Ledent, G. Groeninckx, H. Reynaers, Polymer, Vol. 23 (1982), p.185.
Google Scholar