MD Simulation of CO2-CH4 Mixed Hydrate on Crystal Structure and Stability

Article Preview

Abstract:

MD simulations are carried out on the sI CO2-CH4 mixed hydrates in the constant-NVT and constant-NPT ensembles for the two cases of CO2 occupancy. One is 75% called normal, the other is 87.5%. The simulations results show that the hydrate structure can be maintained both for the two hydrates over the temperature range of 0K to 300K. However, the equilibrium pressure, the potential energy and the MSDs of the atoms in H2O for the higher CO2 ratio hydrates is larger than that of the normal CO2 ratio hydrates, indicating that the normal mixed hydrates is more stable than the higher CO2 occupancy mixed hydrate. These results are consistent with the present experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

310-315

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.D. Sloan Jr.: Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker, (New York, 1998).

DOI: 10.1021/ef000056e

Google Scholar

[2] S.P. Kang, M. -K. Chun, H. Lee: Fluid Phase Equilibr. Vol. 147 (1998), p.229.

Google Scholar

[3] R. Anderson, M. Liamedo, B. Tohidi, W. Burgass: J. Phys. Chem. B Vol. 107 (2003), p.3507.

Google Scholar

[4] K. Ohgaki, H. Sangawa, T. Matsubara, S. Nakano: J. Chem. Eng. Jpn. Vol. 29 (1996), p.478.

Google Scholar

[5] E.M. Yezdimer, P.T. Cummings, A.A. Chialvo: J. Phys. Chem. A Vol. 106 (2002), p.7982.

Google Scholar

[6] S. Hirohama, Y. Shimoyama, A. Wakabayashi, S. Tatsuta, N. Nishida: J. Chem. Eng. Jpn. Vol. 29 (1996), p.1014.

Google Scholar

[7] T. Komai, T. Kawamura, S. Kang, K. Nagashima, Y. Yamamoto, J. Phys.: Condens. Matter Vol. 14 (2002), p.11395.

Google Scholar

[8] H. Lee, Y. Seo, Y. -T. Seo, I.L. Moudrakovski, J.A. Ripmeester: Angew. Chem. -Int. Edit., Vol. 42 (2003), p.5048.

Google Scholar

[9] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith, Jr., H. Inomata: Energ. Convers. Management Vol. 46(11-12) (2004), p.1680.

Google Scholar

[10] Adisasmito S, Frank RJ, Sloan ED: J. Chem. Eng. Data Vol. 36 (1991), p.68.

Google Scholar

[11] Seo Y T, Lee H: J Chem Eng Data, Vol. 46 (2001), p.381.

Google Scholar

[12] Ross Anderson, Maria Llamedo, Bahman Tohidi, and Rod W. Burgass: J. Phys. Chem. B Vol. 107 (2003), p.3507.

Google Scholar

[13] Assane Thiam, Amina Bouchemoua, Fabien Chauvy, Jean-Michel Herri, Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, (2008).

Google Scholar

[14] Laura J. Rovetto, Steven F. Dec, Carolyn A. Koh, E. Dendy Sloan Jr., Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, (2008).

Google Scholar

[15] Chun-Yu Geng, Hao Wen and Han Zhou: J. Phys. Chem. A, Vol. 113(18) (2009), p.5463.

Google Scholar

[16] Jorgensen, W.L., et al: J. Chem. Phys., Vol. 79(2) (1983), p.926.

Google Scholar

[17] W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives: J. Am. Chem. Soc., Vol. 118 (1996), p.11225.

Google Scholar

[18] Software Materials Explorer 5. 0, 2009, Fujitsu Co.

Google Scholar

[19] Yousuf M, et al: Applied Phys A, Vol. 78(6) (2004), p.925.

Google Scholar

[20] Masaki Ota, Takeomi Saito, Tsutomu Aida, Masaru Watanabe, Yoshiyuki Sato, Richard L.: AIChE Journal, Vol. 53(10) (2007), p.2715.

Google Scholar

[21] Judith M. Schicks, Manja Luzi, Erik Spangenberg, Rudolf Naumann, Jörg Erzinger. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, (2008).

Google Scholar