Hydrothermal Treatment of TiO2 Nanotube Arrays with AgNO3 Solutions and their Photocatalytic Properties

Article Preview

Abstract:

In this paper, highly-ordered TiO2 nanotube arrays (TNAs) were firstly fabricated by electrochemical anodization. Secondly, the as-prepared TNAs were used as precursors for hydrothermal treatment and large percentage of nanoparticles with special shape were achieved. Their photocatalytic activity was evaluated based upon the removal of methylene blue (MB) dye in the aqueous solution. In order to enhance the photocatalytic properties, we added a certain amount of AgNO3 solution (0.1M) in the hydrothermal treatment process and the experiment demonstrated that the addition of AgNO3 solution displayed an excellent improvement for the photocatalytic activity. Under sunlight irradiation, the methylene blue pollutant of 1×10−5M was almostly completely degraded by Ag -TiO2 nanoparticles within 300 min.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

702-706

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi and G. Thornton: Nature Mater. 5, 189-192 (2006).

DOI: 10.1038/nmat1592

Google Scholar

[2] X. Q. Gong, A. Selloni, M. Batzill and U. Diebold: Nature Mater. 5, 665-670 (2006).

Google Scholar

[3] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu: Nature 453, 638-642 (2008).

Google Scholar

[4] L. Kavan, M. Gratzel, S. E. Gilbert, C. Klemenz and H. J. Scheel: J. Am. Chem. Soc. 118, 6716 –6723(1996).

Google Scholar

[5] G. K. Mor, K. Shankar, M. Paulose,O. K. Varghese and C. A. Grimes: Nano Lett. 6, 215–218 (2006).

Google Scholar

[6] W. Chanmanee, A. Watcharenwong, C. R. Chenthamarakshan, P. Kajitvichyanukul, N. R. de Tacconi and K. Rajeshwar: J. Am. Chem. Soc. 130, 965-974 (2008).

DOI: 10.1021/ja076092a

Google Scholar

[7] X. Q. Gong and A. Selloni: J. Phys. Chem. B 109, 19560-19562 (2005).

Google Scholar

[8] G. S. Herman, M. R. Sievers and Y. Gao: Phys. Rev. Lett. 84, 3354-3357 (2000).

Google Scholar

[9] M. Lazzeri, A. Vittadini andA. Selloni: Phys. Rev. B 63, 155409 (2001).

Google Scholar

[10] P. Raghunath and M. C. Lin: J. Phys. Chem. C 112, 8276–8287 (2008).

Google Scholar

[11] G. A. Kimmel and N. G. Patrik: Phys. Rev. Lett. 100, 196102 (2008).

Google Scholar

[12] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey: J. Mater. Res. 16, 3331 (2001).

Google Scholar

[13] A. Fujishima and K. Honda: Nature 238, 37-38 (1972).

Google Scholar

[14] B. O'Regan and M. Gratzel: Nature 353, 737-740 (1991).

Google Scholar

[15] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Crimes: Adv. Mater. 15, 624-627 (2003).

Google Scholar

[16] L. Peng, A. D. Mendelsohn, T. J. LaTempa, S. Yoriya, C. A. Grimes and T. A. Desai: Nano Lett. 9, 1932-1936 (2009).

DOI: 10.1021/nl9001052

Google Scholar

[17] X. Hu, T. Zhang, Z. Jin, S. Huang, M. Fang, Y. Wu and L. Zhang: Cryst. Grow. Des. 9, 2324 -2328 (2009).

Google Scholar

[18] X. Hu, T. Zhang, Z. Jin, J. Zhang, W. Xu, J. Yan, J. Zhang, L. Zhang and Y. Wu: Mater. Lett. 62, 4579 - 4581 (2008).

Google Scholar

[19] R. Pan, Y. Wu and K. Liew: Appl. Surf. Sci. 256, 6564 - 6568 (2010).

Google Scholar