Explosive Consolidation and its Application on Preparing of Ultra-Fine Grained Tungsten Plasma Facing Material

Article Preview

Abstract:

Nuclear fusion is a promising source of environmental friendly energy for the future, and the ultra-fine grained Tungsten (W) is a hopeful candidate material to be used as plasma-facing materials (PFMs), which are the key materials in the International Thermonuclear Experimental Reactor (ITER), for its many useful advantages. While, due to its high melting point and high sintering temperature needed, the ultra-fine grain sized tungsten is not easy to be fabricated. In this paper, the method of explosive consolidation of powders as well as its mechanism and improvements are discussed, and finally the possibility of using this method to preparing of ultra-fine grained W plasma facing material are also introduced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

842-845

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ongena and G. Van Oost: Trans. Fusion Technol., Vol. 37 (2000), p.3.

Google Scholar

[2] J. Matějíček, P. Chráska, J. Linke: J. Thermal Spray Technol., Vol. 16(1) (2007), p.64.

Google Scholar

[3] H. Bolt, V. Barabash, G. Federici, et al.: J. Nucl. Mater., Vol. 307–311 (2002), p.43.

Google Scholar

[4] I. Smid, M. Akiba, G. Vieider, L. Plochl, J. Nucl. Mater., Vol. 253–263 (1998) , p.160.

Google Scholar

[5] H. Kurishita, S. Matsuo, H. Arakawa, S. Kobayashi, K. Nakai, T. Takida, K. Takebe, M. Kawai, Mater. Sci. Eng., Vol. A 477 (2008), p.162.

DOI: 10.1016/j.msea.2007.05.009

Google Scholar

[6] Z. J. Zhou, Y. Ma, J. Du, J. Linke, Mater. Sci. Eng., Vol. A505(2009) , p.131.

Google Scholar

[7] R. Pruemmer, P. Weimar, Interceram, Vol. 51 (6) (2002), p.394.

Google Scholar

[8] R. Pruemmer, T.B. Bhat, K.S. Kumar, K. Hokamoto, Explosive Compaction of Powders & Composites, 1st ed., Science Publishers, 2006, p.87.

Google Scholar

[9] A.G. Mamalis, J. Mater. Process. Technol., Vol. 99 (2000) , p.1.

Google Scholar

[10] R. B Schwarz, P Kasiraj, T Vreeland Jr, T. J Ahrens, Acta Metallurgica, Vol. 32 (1984), p.1243.

DOI: 10.1016/0001-6160(84)90131-7

Google Scholar

[11] A. Ferreira, et al., Metall. Trans. 22A (1991) , p.685.

Google Scholar

[12] G. Merzhanov , Int. J. Self-Propagating High-Temperature Synth. Vol. 6 (1997), p.119.

Google Scholar

[13] M. Zohoor, A. Mehdipoor, J. Mater. Process. Technol, Vol. 209 (2009), p.4201.

Google Scholar

[14] K. Hokamoto , S. Tanaka, M. Fujita, J. Impact Eng, Vol. 24 (2000), p.631.

Google Scholar