Study on Non-Equilibrium Grain-Boundary Segregation of Sulfur among Hastelloy X

Article Preview

Abstract:

Sulfur is the main element which caused Nickel-based alloy embrittlement. In this study, the sulfur in Hastelloy X superalloy was determinated with Auger Electron Spectroscopy (AES) for samples quenched from 1180 °C and aged at 500 °C for different time. Experiments results confirmed the non-equilibrium segregation characteristics of sulfur. The results showed that a segregation peak of sulfur is at about 20 min during ageing. This peak was satisfactorily elucidated by the theory of non-equilibrium grain-boundary segregation. By theoretical calculation, the critical time constant of impurities sulfur atom in the Hastelloy X δs= 357. At the same time, the result provides a theoretical basis for sulfur segregation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

861-865

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. X. Dong,M. C. Zhang, X. S. Xie, et al: Materials Science and Engineering . Vol. A328 (2002), pp.8-13.

Google Scholar

[2] T. D. Xu, B. Y. Cheng: Progress in Materials Science Vol. 49(2004), pp.109-208.

Google Scholar

[3] McLean D. Grain boundaries in metals. Oxford University Press, (1957).

Google Scholar

[4] K. T. Aust, R. E. Hanneman, P. Niessen, et al: Acta Metallurgica Vol. 16(1968), pp.291-302.

Google Scholar

[5] T. R. Anthony: Acta Metallurgica Vol. 17(1969), pp.603-609.

Google Scholar

[6] T. D. Xu: Journal of Materials Science Vol. 22(1987), pp.337-345.

Google Scholar

[7] T. D. Xu Xu: Journal of Materials Science Letters Vol. 7(1988), pp.241-242.

Google Scholar

[8] T. D. Xu, S. H. Song, H. Z. Shi, et al: Acta Metallurgica et Materialia Vol. 39(1991), pp.3119-3124.

Google Scholar

[9] Q. F. Li, S. L. Yang, L. Li, et al: Scripta Materialia Vol. 47(2002), pp.389-392.

Google Scholar

[10] P. Sevc, J. Janovec, M. Lucas, et al. Steel Research Vol. 66(1995), pp.537-542.

Google Scholar

[11] W. Chen, M. C. Chaturvedi, N. L. Richards. Metallurgical and Materials Transactions Vol. 32A(2001), pp.931-939.

Google Scholar

[12] H. Ohtani, H. C. Feng, C. J. McMahon, et. al: Metallurgical Transactions A Vol. 7(1976), pp.87-101.

Google Scholar

[13] H. Ohtani, H. C. Feng, C. J. McMahon Metallurgical Transactions A Vol. 7(1976), pp.1123-1131.

Google Scholar

[14] L.E. Davis, N.C. McDonald, P.W. Palmberg, et al.: Handbook of Auger Electron Spectroscopy, 2nd ed., Physical electronics industries press, Minnesota, (1976).

Google Scholar

[15] R. G. Faulkner: Journal of Materials Science Vol. 16(1981), pp.373-383.

Google Scholar

[16] R. E. Hoffman, F.W. Pikus, R. A. Ward, Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers Vol. 206 (1956), pp.483-486.

Google Scholar

[17] R. E. Smallman, Modern Physical Metallurgy, Butterworth, London, (1963).

Google Scholar

[18] S. M. Kim, W. J. L. Buyers, Journal of Physics: Condensed Matter Vol. 8 L (1978), p.103.

Google Scholar

[19] E. A. Brand and G. B. Brook (ed), Smithells metals reference book, 7th ed., Oxford, London, (1992).

Google Scholar

[20] S. H. Song, L. Q. Weng: Materials Science and Technology Vol. 21(2005), pp.305-310.

Google Scholar