Characterization of amoA and hao Genes Responsible for Ammonia Oxidation Reaction in CANON System

Article Preview

Abstract:

In this research the genes (amoA and hao) for ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO) responsible for ammonia oxidation reaction in completely autotrophic nitrogen removal over nitrite process were cloned and sequenced, and the recombinant protein of AMO and HAO was expressed and characterized. The optimum temperature for AMO activity was 55 °C and more than 40% of the maximum activity was retained from 15-50 °C. The optimum pH for the enzyme was found to be pH 11.0. The highest activity for HAO was observed at 45 °C. More than 50% of the maximum activity was retained even at 55 °C. The dependence of HAO on pH was strong and only average 15% of residual activity left at pH ranging from 3.0-9.0. Study on the molecular and biochemistry properties of recombinant AMO and HAO will benefit for the manipulation of ammonia-oxidizing bacteria to achieve the goal of high efficiency of nitrogen removal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 183-185)

Pages:

1014-1019

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. H. Ahn: Process Biochem. Vol. 41 (2006), p.1709.

Google Scholar

[2] M. Strous: Anammix and nitrification in: microbiology of anaerobic ammonium oxidation, Netherlands. Dissertation (2000).

Google Scholar

[3] A. Olav Sliekersa, N. Derwort, J. L. Campose Gomez, M. Strousa, J. G. Kuenena, and M. S. M. Jettena: Water Res. Vol. 36 (2002), p.2475.

Google Scholar

[4] Z. Gong, S. Liu, F. Yang, H. Bao, and K. J. Furukawa: Bioresour. Technol. Vol. 99 (2008), p.2749.

Google Scholar

[5] K. A. Third, J. Paxman, M. Schmid, M. Strous, M. S. Jetten, and R. Cord-Ruwisch: Microbiol. Ecol. Vol. 49 (2005), p.236.

DOI: 10.1007/s00248-004-0186-4

Google Scholar

[6] A. O. Sliekers, K. A. Third, W. Abma, J. G. Kuenen, and M. S. M. Jetten: FEMS Microbiol. Lett. Vol. 218 (2003), p.339.

DOI: 10.1016/s0378-1097(02)01177-1

Google Scholar

[7] C. Helmer, C. Tromm, A. Hippen, K. H. Rosenwinkel, C. F. Seyfried, and S. Kunst: Water Sci. Technol. Vol. 43 (2001), p.311.

DOI: 10.2166/wst.2001.0062

Google Scholar

[8] F. Fang, J. Guo, Y. Qin, B. Luo, and G. Yang: China Water & Wastewater Vol. 22 (2006), p.58.

Google Scholar

[9] D. J. Arp, L. A. Sayavedra, and N. G. Hommes: Arch. Microbiol. Vol. 178 (2002), p.250.

Google Scholar

[10] L. A. Sayavedra-Soto, N. G. Hommes, J. J. Alzerreca, D. J. Arp, J. M. Norton, and M. G. Klotz: FEMS Microbiol. Lett. Vol. 167 (1998), p.81.

DOI: 10.1111/j.1574-6968.1998.tb13211.x

Google Scholar

[11] H. McTavish, J. A. Fuchs, and A. B. Hooper: J. Bacteriol. Vol. 175 (1993), p.2436.

Google Scholar

[12] M. G. Klotz, J. Alzerreca, and J. M. Norton: FEMS Microbiol. Lett. Vol. 150 (1997), p.65.

Google Scholar

[13] C. Bedard and R. Knowles: Microbiol. Rev. Vol. 53 (1989), p.68.

Google Scholar

[14] H. McTavish, F. LaQuier, D. Arciero, M. Logan, G. Mundfrom, J. A. Fuchs, and A. B. Hooper: J. Bacteriol. Vol. 175 (1993), p.2445.

DOI: 10.1128/jb.175.8.2445-2447.1993

Google Scholar

[15] M. G. Klotz and J. M. Norton: Gene Vol. 163 (1995), p.159.

Google Scholar

[16] J. C. Murrell and A. J. Holmes: in Microbial growth of C1 compounds, edited by M. E. Lidstrom and F. R. Tabita, Kluwer, Dordrecht (1996).

Google Scholar

[17] J. D. Semrau, A. Chistoserdov, J. Lebron, C. A., Davagnino J, K. E., A. J. Holmes, F. R., J. C. Murrell, and L. ME: J Bacteriol Vol. 177 (1995), p.3071.

DOI: 10.1128/jb.177.11.3071-3079.1995

Google Scholar

[18] S. A. Ensign, M. R. Hyman, and D. J. Arp: J Bacteriol Vol. 175 (1993), p. (1971).

Google Scholar

[19] E. Bock, H. P. Koops, and H. Harms: in Nitrification. Spec. Publ. Soc. Gen. Microbiol., edited by J. I. Prosser, IRL Press, Oxford (1986).

Google Scholar

[20] A. B. Hooper: in Autotrophic bacteria, edited by H. G. Schlegel and B. Bowien, Science Tech Publishers, Madison, Wis. (1989).

Google Scholar

[21] L. A. Sayavedra-Soto, N. G. Hommes, and D. J. Arp: J. Bacteriol. Vol. 176 (1994), p.504.

Google Scholar

[22] N. G. Hommes, L. A. Sayavedra-Soto, and D. J. Arp: J. Bacteriol. Vol. 183 (2001), p.1096.

Google Scholar

[23] R. Hirota, A. Yamagata, J. Kato, A. Kuroda, T. Ikeda, N. Takiguchi, and H. Ohtake: J. Bacteriol. Vol. 182 (2000), p.825.

Google Scholar

[24] J. Huang, G. Wang, L. Xiao, and J. Guo: J. Southwest Univ. Vol. 29 (2007), p.34.

Google Scholar

[25] F. Fang, G. Yang, J. Guo, and Y. Qin: Environ. Sci. Vol. 28 (2007), p. (1975).

Google Scholar

[26] G. Yang, F. Fang, J. Guo, Y. Qin, and Y. Wei: Environ. Sci. Vol. 30 (2009), p.102.

Google Scholar

[27] J. Guo, G. Yang, F. Fang, and Y. Qin: Chin. J. Environ. Eng. Vol. 3 (2009), p.22.

Google Scholar

[28] Y. Chen, H. Ye, and J. Wang: Environ. Sci. Technol. Vol. 30 (2007), p.24.

Google Scholar

[29] U. K. Laemmli: Nature Vol. 277 (1970), p.680.

Google Scholar

[30] M. E. Rasche, R. E. Hicks, M. R. Hyman, and D. J. Arp: J. Bacteriol. Vol. 172 (1990), p.5368.

Google Scholar

[31] G. A. Truesdale and A. L. Downing: Nature Vol. 173 (1954), p.1236.

Google Scholar

[32] J. Schalk, S. de Vries, J. G. Kuenen, and M. S. M. Jetten: Biochem. Vol. 39 (2000), p.5405.

Google Scholar

[33] M. M. Bradford: Ana. Biochem. Vol. 72 (1976), p.248.

Google Scholar

[34] J. I. Prosser: Adv. Microb. Physiol. Vol. 30 (1989), p.125.

Google Scholar