Effects of Exogenous Nitric Oxide at Different Concentrations on the Photosynthesis of Pinus koraiensis Sieb. Et Zucc. Seedlings

Article Preview

Abstract:

In the study, the gas exchange parameters and chlorophyll contents in the needles of Pinus koraiensis Sieb. et Zucc. exposed to exogenous nitric oxide (NO) were determined. The Pinus koraiensis Sieb. et Zucc. seedlings were treated with sodium nitroprusside (SNP), a NO donor, at 5 different concentrations ranging from 0 mM to 1 mM. The result showed that at different concentrations exogenous NO had different effects on the photosynthetic parameters and photosynthetic pigments. The content of chlorophyll was maximal in the treatment with SNP at 0.01 mM. At low concentrations (0.1 mM) SNP significantly increased the photosynthetic rate (PN) and decreased the Respiration rate (RD) and Compensation irradiance (IC) of the needles (p<0.05). The experiment proved that at low concentrations exogenous NO signals increased the photosynthesis of Pinus koraiensis Sieb. et Zucc. seedlings. The present results suggested that the lower concentrations SNP might decrease the level of reactive oxygen species (ROS) and promote the growth of the Pinus koraiensis Sieb. et Zucc.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 183-185)

Pages:

422-426

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.V. Beligni and L. Lamattina: Plant Cell Environ. Vol. 24 (2001), pp.267-278.

Google Scholar

[2] D.E. Koshland: Science Vol. 258 (1992), p.1861.

Google Scholar

[3] L.A. Ríodel, F.J. Corpas and J.B. Barroso: Phytochemistry Vol. 65 (2004), pp.783-792.

Google Scholar

[4] M.V. Beligni and L. Lamattina: Trends Planti. Vol. 4 (1999), pp.299-230.

Google Scholar

[5] M. Leitner, E. Vandelle, F. Gaupels, D. Bellin and M. Delledonne: Curr. Opin. Plant Biol. Vol. 12 (2009), pp.451-458.

DOI: 10.1016/j.pbi.2009.05.012

Google Scholar

[6] B. Wodala, Z. Deák, I. Vass, L. Erdei and F. Horváth: Acta Biol. Szeged. Vol. 49 (2005), pp.7-8.

Google Scholar

[7] I.D. Wilson, S.J. Neill and J.T. Hancock: Plant Cell Environ. Vol. 31 (2008), pp.622-631.

Google Scholar

[8] F.J. Corpas, J.M. Palma, L.A. Ríodel and J.B. Barroso: New Phytol. Vol. 184 (2009), pp.9-14.

Google Scholar

[9] A.D. Boveris, A. Galatro and S. Puntarulo: Biol. Res. Vol. 33 (2000), pp.159-165.

Google Scholar

[10] D.M. Santa-Cruz, N.A. Pacienza, A.H. Polizio, K.B. Balestrasse, M.L. Tomaro and G.G. Yannarelli: Phytochemistry Vol. 71 (2010), pp.1700-1707.

DOI: 10.1016/j.phytochem.2010.07.009

Google Scholar

[11] C.K. Wang: Forest Ecol. Manag. Vol. 222 (2006), pp.9-16.

Google Scholar

[12] J.W. Li, J.P. Ge, J.L. Ma and D. Chen: The ecology and management of Korean pine mixed forest in the Northeast China Harbin (The Press of North-East Forestry University Publications, China 1997).

Google Scholar

[13] Z.P. Ye: Photosynthetica Vol. 45 (2007), pp.637-640.

Google Scholar

[14] A.R. Wellburn: J. Plant. Physiol. Vol. 144 (1994), pp.307-313.

Google Scholar

[15] C. García-Mata and L. Lamattina: Plant Physiol. Vol. 126 (2001), pp.1196-1204.

Google Scholar

[16] I. Gómez, E. Pérez-Rodríguez, B. Viñegla, F.L. Figueroa and U. Karsten: J. Photochem. Photobiol. B: Biol. Vol. 47 (1998), pp.46-57.

Google Scholar

[17] M. Vagish, S. Garima, M.P. Sheo and A. Gerard: Pestic. Biochem. Physiol. Vol. 92 (2008), pp.30-37.

Google Scholar

[18] G.K. Surabhi, K.R. Reddy and S.K. Singh: Environ. Exp. Bot. Vol. 66 (2009), pp.160-171.

Google Scholar

[19] D. Lin and D.F. Huang: Acta Hortic. Sci. Vol. 30 (2003), pp.221-223.

Google Scholar

[20] F. Kappel and J.A. Flore: J. Am. Soc. Hortic. Sci. Vol. 108 (1983), pp.541-544.

Google Scholar

[21] X. Tian and Y. Lei: Biol. plantarum Vol. 50 (2006), pp.775-778.

Google Scholar