Synthesis, Characterization and Antimicrobial Activity of a New Preservative, 6-O-Chitosan Ester of P-Hydroxybenzoic Acid

Article Preview

Abstract:

A new chitosan ester derivative, chitosan p-hydroxybenzoate is synthesized, which is expected to have antimicrobial activity similar to parabens. The amino group of chitosan reacts well with acyl chloride to prepare a N-amic acid-chitosan. The amino group of chitosan must be protected before synthesizing a 6-O-chitosan ester. Phthalic anhydride is selected to react with chitosan to form N-phthalimide chitosan whose free amino group is protected. By six steps chitosan p-hydroxybenzoate is synthesized. FTIR, 1H NMR and 13C NMR spectra show that the ester bond is formed between p-hydroxybenzonic acid and chitosan. Water solubility of the ester is slightly better than that of heptyl p-hydroxybenzoate, and its solubility in alcohol is greatly improved. Chitosan p-hydroxybenzoate showes broader spectrum antimicrobial activities. It has strong antimicrobial effects against Gram-negative, Gram-positive bacteria and yeasts. The MICs of chitosan p-hydroxybenzoate for Staphylococcus aureus and Escherchia coli are 0.01% and 0.025%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

1049-1055

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Roller, S.; Covill, N. Int. J. Food Microbiol. 1999(47):67-77.

Google Scholar

[2] Sudardshan, N. R.; Hoover, D. G.; Knorr, D. Food Biotechnol. 1992, 6(3): 257-272.

Google Scholar

[3] Wang, G. H. J. Food Protect. 1992, 55(11): 916-919.

Google Scholar

[4] Hwang, J. K.; Kim, H. J; Yoon, S. J.; Pyun, Y. R. Bactericidal activity of chitosan on E. coli. In Advances in Chitin Science; Chen, R. H.; Chen, H. C., Eds.; Rita Advertising Co. Ltd.; Taiwan, 1998; Vol, III, 340-344.

Google Scholar

[5] Helander, I. M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Int. J. Food Microbial, 2001(71): 235-244.

DOI: 10.1016/s0168-1605(01)00609-2

Google Scholar

[6] Lim, S. -H.; Hudson S.M.J. Macromol. Sci. -Pol.R. 2003, C43, 223-269.

Google Scholar

[7] Young D.H.; Kauss,H. Plant Physiol. 1983, 73, 698-702.

Google Scholar

[8] Kim, C. H.; Choi. K. S. Carbohyd. Polym. 1989(11): 307-320.

Google Scholar

[9] Jia. Z. ; Shen, D.; Xu. W. Carbohyd. Res. 2001(333): 1-6.

Google Scholar

[10] Kim, C. H., Choi, J. W.; Chun, H. J.; Choi, K. S. Polym. Bull. 1997(38): 387-393.

Google Scholar

[11] Elder, R. L. J. Am. College of Toxicolgy. 1984(3): 147-209.

Google Scholar

[12] Aalto, T. R.; Firman, M. C., Rigler, F. W. J. Pharmaceutical Asso. 1953(42): 449-457.

Google Scholar

[13] Rosen, W. E.; Berke, P. A. J. Soc. Cosmetic Chemists. 1973(24): 663-675.

Google Scholar

[14] Shin-Ichiro, N.; Osamu, K.; Keisuke, K. Macromoleculars 1991(24): 4745.

Google Scholar

[15] Shin-Ichiro, N.; Osamu, K.; Keisuke, K.; Chidchom, V.; Hiroyoshi, K. Chem. lett 1990, 243.

Google Scholar

[16] Hanno, B.; Volker, F.;. Carbohydr. Res. 2001(331): 43.

Google Scholar

[17] Marjadi, S. I. J. Indian Chem. Soc. 1993(70): 65-66.

Google Scholar

[18] Chattaway. J. Chem. SOC., 1931, 2495.

Google Scholar

[19] Edwin R, M.J. Org. Chem. 1942(7): 444-456.

Google Scholar

[20] Hayashi. Acta Phytochim. 1934(8): 83.

Google Scholar

[21] Gless D.R.; Platter.J. Am. Chem. Soc. 1972, 94: 8613.

Google Scholar

[22] Li, C.; Zheng, J.; Li, J. Clinical Bacteriology; Beijing People Health: Beijing, (1986).

Google Scholar

[23] Zhang, C.; Ping, Q. N.; Zhang, H. J. Eur. Polymer J., 2003(39): 1629-1634.

Google Scholar