Effect of Frequency on Composition and Microstructure of Siliconized Layer Using Pulse Electrodeposition

Article Preview

Abstract:

The siliconized layer on low silicon steel substrate was produced under pulse current conditions from KCl-NaCl-NaF-SiO2 molten salt and the effects of frequency on the composition and microstructure were investigated. The results showed that at the same average current density and other experimental conditions, Si content in the surface and the layer thickness decreased with increasing frequency. Low pulse frequency (500 Hz) and high frequencies (1500, 2000Hz) produced coarse grain and bigger surface roughness. There was a flat fine grain structure and a relatively thick (30m) layer when the frequency was 1000Hz. However, the effect of pulse frequency on the structure of the layer was not obvious. The phase structure of the layer was composed of Fe3Si with (110) preferred orientation at all experimental frequencies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

1113-1116

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ohishi, Y. Mizuyoshi, T. Matsuyama, H. Tatsuoka and H. Kuwabara: Thin Solid Films Vol. 461 (2004), p.63.

DOI: 10.1016/j.tsf.2004.02.063

Google Scholar

[2] S. Tanaka, A. Yamamoto, S. Makiuchi, T. Matsuyama, M. Rebien, W. Henrion, H. Tatsuoka, M. Tanaka, Z. -Q. Liu and H. Kuwabara: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

DOI: 10.1016/j.apsusc.2004.10.086

Google Scholar

[3] A. Il'inskii, S. Slyusarenko, O. Slukhovskii, I. Kaban and W. Hoyer: J. Non-Cryst. Solids Vol. 306 (2002), p.90.

DOI: 10.1016/s0022-3093(02)01051-7

Google Scholar

[4] Schneeweiss, N. Pizuhrova, Y. Jirahskova, T. Zak and B. Cornut: J. Magn. Magn. Mater Vol. 215-216 (2000), p.115.

Google Scholar

[5] D. Nakagauchi, T. Yoshitake and K. Nagayama: Vacuum Vol. 74 (2004), p.653.

Google Scholar

[6] Noriyuki Harada and Hiroshi Takai: Nucl. Instrum. Methods Phys. Res., Sect. B Vol. 206 (2003), p.308.

Google Scholar

[7] X.D. He, X. Li and Y. Sun: J. Magn. Magn. Mater Vol. 320 (2008), p.217.

Google Scholar

[8] H.L. Yang, A.M. Gao, Y.G. Li, F.J. Wang and Y.Z. Zhang: Advanced Materials Research Vol. 129-131 (2010), p.1201.

Google Scholar

[9] Y. Ueda, N. Hataya and H. Zaman: J. Magn. Magn. Mater Vol. 156 (1996), p.350.

Google Scholar

[10] M. Alper, K. Attenborough, R. Hart, S.J. Lance, D.S. Lashmore, C. Younes and W. Schwarzacher: Appl. Phys. Lett. Vol. 63 (1993), p.2144.

DOI: 10.1063/1.110567

Google Scholar

[11] H. L. Yang, Y. Z. Zhang, Y. G. Li, G. Z. Tang and K. Jia: Defect and Diffusion Forum Vol. 295/296 (2009), p.33.

Google Scholar