[1]
S.J. Hosseinipour. An investigation into hot deformation of aluminum alloy 5083, Materials and Design 30 (2009) 319–322.
DOI: 10.1016/j.matdes.2008.04.063
Google Scholar
[2]
Tore B^rvik, Arild H. Clausen, Odd Sture Hopperstad, Magnus Langseth Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study, International Journal of Impact Engineering 30 (2004) 367–384.
DOI: 10.1016/s0734-743x(03)00072-1
Google Scholar
[3]
Arild H. Clausen, Tore Børvik, Odd S. Hopperstad, Ahmed Benallal Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality, Materials Science and Engineering A364 (2004) 260–272.
DOI: 10.1016/j.msea.2003.08.027
Google Scholar
[4]
Y.B. Guo An integral method to determine the mechanical behaviorof materials in metal cutting, Journal of Materials Processing Technology 142 (2003) 72–81.
DOI: 10.1016/s0924-0136(03)00462-x
Google Scholar
[5]
M.E. Merchant, Mechanics of the metal cutting process, J. Appl. Phys. 16 (1945) .
Google Scholar
[6]
E. Usui, Progress of predictive theories in metal cutting, JSME Int. J. Ser. III 31 (2) (1988) 363–369.
Google Scholar
[7]
S. Kobayashi, E.G. Thomsen, Metal cutting analysis. I. Re-evaluation and new method of presentation of theories, ASME J. Eng. Ind. 90 (1962) 63–70.
DOI: 10.1115/1.3667440
Google Scholar
[8]
J.H.L. The, R.F. Scrutton, The stress-state in the shear zone during steady state machining, ASME J. Eng. Ind. 101 (1979).
Google Scholar
[9]
N.N. Zorev, Metal Cutting Mechanics, Pergamon Press, Oxford, (1966).
Google Scholar
[10]
S. Kalpakjian, Manufacturing Processes for Engineering Materials, n3rd ed., Addison Wesley/Longman, Menlo Park, (1997).
Google Scholar
[11]
B.F. von Turkovich, Shear stress in metal cutting, ASME J. Eng. Ind. 92 (1970) 151–157.
Google Scholar
[12]
C. Spaans, Treatise of the streamlines and the stress, strain, and strain rate distributions, and on stability in the primary shear zone in metal cutting, ASME J. Eng. Ind. 94 (1972) 690–696.
DOI: 10.1115/1.3428230
Google Scholar
[13]
S. Lei, Y.C. Shin, F.P. Incropera, Material constitutive modeling under high strain rates and temperatures through orthogonal machining tests, J. Manuf. Sci. Eng. 121 (1999) 577–585.
DOI: 10.1115/1.2833062
Google Scholar
[14]
G. Poulachon, A.L. Moisan, I.S. Jawahir, Evaluation of chip morphology in hard turning using constitutive models and material property data, in: Proceedings of the ASME–IMECE, vol. 12, MED, New York, 2002, p.179–185.
DOI: 10.1115/imece2001/med-23319
Google Scholar
[15]
Y.B. Guo, C.R. Liu, Mechanical properties of hardened AISI 52100 steel in hard machining processes, J. Manuf. Sci. Eng. 124 (1999) 1–9.
DOI: 10.1115/1.1413775
Google Scholar
[16]
G.R. Johnson, J.M. Hoegfeldt, U.S. Lindholm, A. Nagy, Response of various metals to large torsional strains over a large range of strain rates. Part 1. Ductile metals, J. Eng. Mater. Technol. 105 (1983) 42–47.
DOI: 10.1115/1.3225617
Google Scholar
[17]
G.R. Johnson, J.M. Hoegfeldt, U.S. Lindholm, A. Nagy, Response of various metals to large torsional strains over a large range of strain rates. Part 1. Ductile metals, J. Eng. Mater. Technol. 105 (1983) 42–47.
DOI: 10.1115/1.3225617
Google Scholar