Simulation of Reflective Crack Propagation Path in Asphalt Overlay under the Partial Wheel Load

Abstract:

Article Preview

Partial wheel load is one of the main causes that lead to shear-type reflective crack of asphalt overlay in the old cement concrete pavement. Based on the theory of fracture mechanics and finite element method, this paper focuses on the numerical simulation of the reflective crack propagation path in asphalt overlay under the partial wheel load. Calculation result and analysis show that reflective crack partially expands upwards at the side of wheel load under the effect of partial wheel load with a sequential increase of crack propagation length. As the crack propagation length increases, stress intensity factors grow rapidly in the early period, and then increase by degrees slowly and, in the later period, the amplitude grows increasingly. Stress and strain fields enhance as the reflective crack increases upwards and the crack propagation angle expands gradually with the increase of reflective crack propagation length.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

2001-2004

DOI:

10.4028/www.scientific.net/AMR.189-193.2001

Citation:

B. Yang et al., "Simulation of Reflective Crack Propagation Path in Asphalt Overlay under the Partial Wheel Load", Advanced Materials Research, Vols. 189-193, pp. 2001-2004, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.