Dependence of Structural Stress on Indium Bump Sizes in 8×8 InSb Focal Plane Array

Abstract:

Article Preview

Based on viscoplastic Anand’s model, the structural stress of 8×8 InSb array detector with underfill dependent on indium bump sizes is systemically researched by finite element method. Simulation results show that as the diameters of indium bump decrease from 36μm to 20μm in step of 2μm, the maximum stress existing in InSb chip first reduces sharply, then increases flatly, and reaches minimum with indium bump diameter 32μm. The maximum stress in Si readout integrated circuit (ROIC) fluctuates at 320MPa with amplitude less than 50MPa, almost half stress in InSb chip. Yet the maximum stress in the indium bump array is almost unchangeable and keeps at 16.3MPa. When the height of indium bump increases from 9μm to 21μm in step of 6μm, the maximal stress in InSb chip first reduces sharply from 800MPa to 500MPa, then almost retains constant. With indium bump diameter 32μm and height 21μm, the maximum stresses in whole 8×8 InSb array detector reaches minimum 458MPa, besides, the stress distribution at the contacts areas is uniform and concentrated, the stress value is smallest and this structure is promising to avoid device invalidation.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

2289-2293

DOI:

10.4028/www.scientific.net/AMR.189-193.2289

Citation:

L. G. Sun et al., "Dependence of Structural Stress on Indium Bump Sizes in 8×8 InSb Focal Plane Array", Advanced Materials Research, Vols. 189-193, pp. 2289-2293, 2011

Online since:

February 2011

Export:

Price:

$38.00

[1] Gau Y. T., Dai L. K., Yang S. P., Weng P. K., Huang K. S. et al: Proceedings of The International Society for Optical Engineering, Vol. 4078 (2003), pp.467-479.

[2] Parrish W. J., Blackwell J. D., Kincaid G. T. and Paulson R. C.: Proceedings of The International Society for Optical Engineering, Vol. 1540 (1991), pp.274-284.

[3] J. H. L. Pang and D.Y. R. Chong: IEEE Transactions on Advanced Packaging, Vol. 24(4) (2001), pp.499-506.

[4] Z. Zhang and C. P. Wong: IEEE Transactions on Advanced Packaging, Vol. 27(3) (2004), pp.515-523.

[5] R. W. Chang and F. Patrick Mccluskey: Journal of Electronic Materials, Vol. 38(9) (2009), pp.1855-1859.

[6] S. Kim and H. Ledbetter: Materials Science and Engineering A, Vol. 252 (1998), pp.139-143.

[7] E. B. Hermida, D. G. Melo, J. C. Aguiar and D. E. Lopez: Journal of Alloys and Compounds, Vol. 310(1) (2000), pp.91-96.

[8] R. P. Reed, C. N. McCowan and R. P. Walsh: Materials Science and Engineering, Vol. 102(2) (1988), pp.227-236.

[9] G. Z. Wang, Z. N. Cheng, K. Becker and J. Wilde: Journal of Electronic Packaging, Vol. 123(3) (2001), pp.247-253.

[10] Wilde J., Becker K., Thoben M., Blum W., Jupitz T., Wang G. and Cheng Z. N.: IEEE Transactions on Advanced Packaging, Vo. 23(3) (2000), pp.408-414.

[11] Q. D. Meng, Y. Q. Lv, Z. X. Lu and W. G. Sun: Journal of Infrared and Millimeter Waves, (2011), in press.

[12] Q. D. Meng, X. L. Zhang, X. L. Zhang and W. G. Sun: Applied Mechanics and Materials Vol. 33-34 (2010), pp.207-211.

In order to see related information, you need to Login.