Dependence of Structural Stress on Indium Bump Sizes in 8×8 InSb Focal Plane Array

Article Preview

Abstract:

Based on viscoplastic Anand’s model, the structural stress of 8×8 InSb array detector with underfill dependent on indium bump sizes is systemically researched by finite element method. Simulation results show that as the diameters of indium bump decrease from 36μm to 20μm in step of 2μm, the maximum stress existing in InSb chip first reduces sharply, then increases flatly, and reaches minimum with indium bump diameter 32μm. The maximum stress in Si readout integrated circuit (ROIC) fluctuates at 320MPa with amplitude less than 50MPa, almost half stress in InSb chip. Yet the maximum stress in the indium bump array is almost unchangeable and keeps at 16.3MPa. When the height of indium bump increases from 9μm to 21μm in step of 6μm, the maximal stress in InSb chip first reduces sharply from 800MPa to 500MPa, then almost retains constant. With indium bump diameter 32μm and height 21μm, the maximum stresses in whole 8×8 InSb array detector reaches minimum 458MPa, besides, the stress distribution at the contacts areas is uniform and concentrated, the stress value is smallest and this structure is promising to avoid device invalidation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

2289-2293

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gau Y. T., Dai L. K., Yang S. P., Weng P. K., Huang K. S. et al: Proceedings of The International Society for Optical Engineering, Vol. 4078 (2003), pp.467-479.

Google Scholar

[2] Parrish W. J., Blackwell J. D., Kincaid G. T. and Paulson R. C.: Proceedings of The International Society for Optical Engineering, Vol. 1540 (1991), pp.274-284.

Google Scholar

[3] J. H. L. Pang and D.Y. R. Chong: IEEE Transactions on Advanced Packaging, Vol. 24(4) (2001), pp.499-506.

Google Scholar

[4] Z. Zhang and C. P. Wong: IEEE Transactions on Advanced Packaging, Vol. 27(3) (2004), pp.515-523.

Google Scholar

[5] R. W. Chang and F. Patrick Mccluskey: Journal of Electronic Materials, Vol. 38(9) (2009), pp.1855-1859.

Google Scholar

[6] S. Kim and H. Ledbetter: Materials Science and Engineering A, Vol. 252 (1998), pp.139-143.

Google Scholar

[7] E. B. Hermida, D. G. Melo, J. C. Aguiar and D. E. Lopez: Journal of Alloys and Compounds, Vol. 310(1) (2000), pp.91-96.

Google Scholar

[8] R. P. Reed, C. N. McCowan and R. P. Walsh: Materials Science and Engineering, Vol. 102(2) (1988), pp.227-236.

Google Scholar

[9] G. Z. Wang, Z. N. Cheng, K. Becker and J. Wilde: Journal of Electronic Packaging, Vol. 123(3) (2001), pp.247-253.

Google Scholar

[10] Wilde J., Becker K., Thoben M., Blum W., Jupitz T., Wang G. and Cheng Z. N.: IEEE Transactions on Advanced Packaging, Vo. 23(3) (2000), pp.408-414.

DOI: 10.1109/6040.861554

Google Scholar

[11] Q. D. Meng, Y. Q. Lv, Z. X. Lu and W. G. Sun: Journal of Infrared and Millimeter Waves, (2011), in press.

Google Scholar

[12] Q. D. Meng, X. L. Zhang, X. L. Zhang and W. G. Sun: Applied Mechanics and Materials Vol. 33-34 (2010), pp.207-211.

Google Scholar