A Physical Explanation of Plateau in Velocity vs. Undercooling Curve Using a Undercooled Dendrite Growth Model

Article Preview

Abstract:

A steady-state non-equilibrium dendrite growth model was extended for binary alloy assuming non-linear liquidus and solidus. Satisfactory agreement of the model prediction with the experimental data of Ni-0.7at.%B and Ni30Cu70 alloys was achieved. The velocity plateau as experimentally observed in the velocity versus undercooling is quantitatively analyzed in terms of this model. Accordingly, the initiating point (i.e. corresponding to the critical velocity of absolute solutal stability VC*) and the ending point (i.e. corresponding to the velocity of maximal tip radius VRm) of the plateau are characterized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

3815-3818

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Lipton, W. E. Glicksman and W. Kurz: Mat. Sci. Eng Vol. 65 (1984), p.57.

Google Scholar

[2] J. Lipton, W. Kurz, R. Trivedi: Acta Metall Vol. 35(4) (1987), p.957.

Google Scholar

[3] W. J. Boettinger, S. R. Coriell, R. Trivedi, in: Mehrabian R, Parrish P. A, (Eds), Rapid Solidification Processing: Principles and Technologies IV, Claitor's, Baton Rouge, LA, 13 (1988).

Google Scholar

[4] Alfred G. Divenuti and Teiichi Ando: Metal. Mater. Trans. A Vol. 29A (1998), p.3047.

Google Scholar

[5] P.K. Galenko, D.A. Danilov: Phys. Lett. A Vol. 235 (1997), p.271.

Google Scholar

[6] P.K. Galenko, D.A. Danilov: J. Crystal Growth Vol. 197 (1999), p.992.

Google Scholar

[7] P.K. Galenko, D.A. Danilov: Phys. Rev. E Vol. 69 (2004), p.051608.

Google Scholar

[8] K. Eckler, RF Cochrane, D.M. Herlach, B. Feuerbacher, M. Jurisch: Phys. Rev. B Vol. 45 (1992), p.5019.

DOI: 10.1103/physrevb.45.5019

Google Scholar

[9] R. Willnecker, D. M. Herlach, B. Feuerbacher: Phys. Rev. B Vol. 62 (1989), p.2707.

Google Scholar

[10] K. Eckler, D.H. Herlach, M.J. Aziz: Acta Metall. Mater Vol. 42 (1994), p.975.

Google Scholar

[11] M. Barth, B. Wei, D. Herlach: Phys. Rev. B Vol. 51 (1995), p.3422.

Google Scholar

[12] R. Willnecker, D. M. Herlach, B. Feuerbacher: Appl. Phys. Lett Vol. 56 (1990), p.324.

Google Scholar

[13] W. Kurz, D.J. Fisher, in Fundamentals of Solidification, fourth ed., Switzerland Trans Tech Publications, 1998, p.147.

Google Scholar

[14] P. R. Algoso, W. H. Hofmeister, R. J. Bayuzick: Acta Metal Vol. 51 (2003), p.4307.

Google Scholar

[15] T. Volkmann, G. Wilde, R. Willnecker, D. Herlach: J. Appl. Phys Vol. 83 (1998), p.3028.

Google Scholar

[16] S. L. Sobolev: Phys. Rev. E Vol. 55 (1997), p.6845.

Google Scholar

[17] D. Turnbull: J. Phys. Chem Vol. 66 (1962), p.609.

Google Scholar

[18] M. J. Aziz and T. Kaplan: Acta Metall Vol. 36(8) (1988), 2335.

Google Scholar

[19] G.P. Ivantsov: Dokl. Akad. Nauk. SSSR Vol. 58 (1947), p.567 G.P. Ivantsov, Dokl. Akad. Nauk. SSSR Vol. 83 (1952), p.573.

DOI: 10.1016/0011-7471(63)90317-6

Google Scholar

[20] H.F. Wang, F. Liu, Z. Chen et al: Acta Mater Vol. 55 (2007), p.497.

Google Scholar