[1]
Y S Zong, X Huang, Z Q Li, Application and development of advanced deformation technology[J] . Engineering plastic, 2006, 13(3):23-29. In Chinese.
Google Scholar
[2]
Tonshoff H K, Kroos F, Marzenell C. High pressure water peening – a new mechanical surface strengthening process [J]. Annals of CRIP, 1997, 16: 113-116.
DOI: 10.1016/s0007-8506(07)60787-2
Google Scholar
[3]
Daniewicz S R, Cummings S D. Characterization of a water peening process [J]. Trans. ASME, J. Eng. Mater. Tech, 1999, 121: 336-340.
Google Scholar
[4]
Sahaya G A, Gnanamoorthy R. A novel surface modification technique for the introduction compressive residual stress and preliminary studies on aluminum alloy AA6063 [J]. Surf. Coat. Tech, 2006, 201: 1768-1775.
DOI: 10.1016/j.surfcoat.2006.03.002
Google Scholar
[5]
Sahaya G A, Gnanamoorthy R. Surface modification by oil jet peening in Al alloy AA6063-T6 and AA6061-T4: Residual stress and hardening [J]. App. Surf. Sci, 2006, 253: 989-996.
DOI: 10.1016/j.apsusc.2006.02.060
Google Scholar
[6]
Odhiambo D, Soyama H. Cavitation shotless peening for improvement of fatigue strength of carbonized steel [J]. Int. J. Fatigue, 2003, 25: 1217-1222.
DOI: 10.1016/s0142-1123(03)00121-x
Google Scholar
[7]
Soyama H, Asahara M. Improvement in fatigue strength of silicon manganese steel SUP7 by using a cavitation jet [J]. JSME Int. J. Ser. A, 2000, 43: 173-178.
DOI: 10.1299/jsmea.43.173
Google Scholar
[8]
Wanger L. Mechanical surface treatment on titanium and aluminum and magnesium alloy [J]. Mater. Sci. Eng, 1999, A263: 210-216.
Google Scholar
[9]
Mutoh Y, Fair G H, Noble B, et al. The effect of residual stresses induced by shot peening on fatigue crack propagation in two high strength aluminum alloys [J]. Fatigue Fract. Eng. Struct, 1997, 10: 261-272.
DOI: 10.1111/j.1460-2695.1987.tb00205.x
Google Scholar
[10]
A. Eftekhari, J. E. Talia, P. K. Mazumdar. Influence of surface condition on the fatigue of an aluminum-lithium alloy (2090-T3) [J]. Mater. Sci. Eng, 1995, A199: L3-L6.
DOI: 10.1016/0921-5093(95)09805-4
Google Scholar
[11]
Sun, Z., Kang, X. Q. and Wang, X. H. Experimental system of cavitation erosion with water jet [J]. Mater. Design, 2005, 26, 59-63.
DOI: 10.1016/j.matdes.2004.04.003
Google Scholar
[12]
Zhenxing Zhao, Jianjing He . Hydraulics [M]. BeiJing, Tsinghua university press. 2005: 112. In Chinese.
Google Scholar
[13]
A. SAHAYA Grinspan, R. GNANAMOORTHY, Structure of oil cavitation jet and cavitation jet erosion of aluminum alloy, AA 6063 -T6, Structure of cavitation jet and cavitation jet erosion.
DOI: 10.1115/1.3129134
Google Scholar
[14]
Dular, M., Stoffel, B. & Sirok, B. Development of a cavitation erosion model. Wear, 2006, 261, 642-655.
DOI: 10.1016/j.wear.2006.01.020
Google Scholar
[15]
Bebedetti, M., Bortolamedi, T., Fontanari, V. & Frendo, F. Bending fatigue behavior of differently shot peened Al 6082-T5 alloy. Int. J. Fatigue, 2004, 26, 889-897.
DOI: 10.1016/j.ijfatigue.2003.12.003
Google Scholar
[16]
Zhi Sun, Li Jiang, Pengzhan, Ying. Failure Analysis-foundation and application, China Machine Press, 2010, 144-145. In Chinese.
Google Scholar
[17]
Richard W, Deformation and fracture mechanics of engineering materials, 2th Edi, 1983, John Wiley & Sons, Inc. 541.
Google Scholar
[18]
Y X Gao, J Z Yi, P D Lee, et al. A micro-cell of the effect of microstructure and on fatigue in cast aluminum alloys [J]. Acta Mater, 2004, 52: 5435-5449. In Chinese. *Corresponding author: Sui Yanwei, email: suiyanwei@cumt. edu. cn , Tel: 15852187006.
DOI: 10.1016/j.actamat.2004.07.035
Google Scholar