Effect of SnO2 Modification on Permeate Flux of Α-Al2O3 Microfiltration Membrane for Treating Fe(OH)2 Suspensions

Article Preview

Abstract:

To improve the permeate flux of ceramic membrane, commercial α-Al2O3 microfiltration membrane of 0.2 μm pore diameter was modified with SnO2 nano grains by in situ synthesis method. The permeate fluxes of the membrane for pure water and treating Fe(OH)2 suspensions were studied mainly in the paper. The results showed that the pure water stable permeate fluxes of unmodified and SnO2 modified microfiltration membranes were 0.61 m3h-1m-2 and 1.87 m3h-1m-2, respectively. When treating 1L 0.01 mol∙L-1 Fe(OH)2 suspensions, the permeate fluxes of SnO2 modified membrane was higher than that of unmodified membrane all the time and the clarified permeate was obtained. The results indicated that in situ synthesis method can be successfully used to modify α-Al2O3 microfiltration membrane with SnO2 nano grains for permeate flux increase, and the microfiltration membrane has excellent treatment effect on Fe(OH)2 suspensions. Furthermore, the enhancement mechanism of permeate flux of SnO2 modification microfiltration membrane was discussed initially.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

489-493

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.G. Qu, X.Q. Zhang and S.Y. Xia: Shanghai Environ. Sci. (In Chinese), Vol. 20(2007), p.441.

Google Scholar

[2] Y.X. Gao, M. Yang, J.Y. Hu and Y. Zhang: Desalination, Vol. 160(2004), p.123.

Google Scholar

[3] W.J. Bai, X.B. Xue, L.S. Tang, J. Wu and W.H. Xing: China Powder Sci. Technol. (In Chinese), Vol. 11(2005), p.28.

Google Scholar

[4] W.M. Xi and S.U. Geissen: Water. Res., Vol. 35(2001), p.1256.

Google Scholar

[5] W.M. Lu, K.L. Tung, C.H. Pan and K.J. Hwang: J. Membrane. Sci., Vol. 198(2002), p.225.

Google Scholar

[6] K.J. Hwang, F.Y. Chou and K.L. Tung: J. Membrane. Sci., Vol. 274(2006), p.183.

Google Scholar

[7] K.J. Hwang and H. Hwang: Sep. Purif. Technol., Vol. 51(2006), p.416.

Google Scholar

[8] J. Kromkamp, F. Faber, K. Schroen and R. Boom: J. Membrane. Sci., Vol. 268(2006), p.189.

Google Scholar

[9] I. l. Roux, H.M. Krieg, C.A. Yeates and J.C. Breytenbach: J. Membrane. Sci., Vol. 248(2005), p.127.

Google Scholar

[10] M. Khayet, A. Velazquez, J.I. Mengual: J. Membrane. Sci., Vol. 240(2004), p.123.

Google Scholar

[11] C. Zhou, Z. Wang, Y.L. Liang and J.M. Yao: Desalination, Vol. 225(2008) 123.

Google Scholar

[12] A.A. Amoudi and R.W. Lovitt: J. Membrane. Sci., Vol. 303(2007), p.4.

Google Scholar

[13] F.G. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin and F.L. Yang: Water. Res., Vol. 43(2009), p.1489.

Google Scholar

[14] J.E. Zhou, X.B. Hu, Y. Yu, X.F. Hu, Y.Q. Wang and X.Z. Zhang: J. Chin. Ceram. Soc. (In Chinese), Vol. 35(2007), p.202.

Google Scholar

[15] J.E. Zhou, X.B. Hu, Y. Yu, X.F. Hu, Y.Q. Wang and X.Z. Zhang: J. Chin. Ceram. Soc. (In Chinese), Vol. 35(2007), p.1444.

Google Scholar

[16] K.J. Hwang and H. Hwang: Sep. Purif. Technol., Vol. 51(2006), p.416.

Google Scholar

[17] V.I. Zabolotsky, J.A. Manzanares, V.V. Nikonenko, K.A. Lebedev and E.G. Lovtsov: Desalination, Vol. 147(2002), p.387.

DOI: 10.1016/s0011-9164(02)00614-8

Google Scholar

[18] R. Takagi and M. Nakagaki: Sep. Purif. Technol., Vol. 25(2001), p.369.

Google Scholar

[19] L. Palacio, J.I. Calvo, G. Kherif, A. Larbot, A. Hernandez and P. Pradanos: Colloids Surf., A, Vol. 138(1998), p.291.

Google Scholar

[20] D. Elzo, E. Middelink, V. Gekas and I. Huisman: Colloids Surf., A, Vol. 138(1998), p.145.

Google Scholar