Preparation and Characterisation of Polyaniline Grafted Multiwalled Carbon Nanotubes/Epoxy Composite

Article Preview

Abstract:

Dodecyl benzene sulfonic acid (DBSA) doped polyaniline (PANI) grafted MWNTs (PANI-g-MWNTs)/Epoxy composite were prepared by aniline in situ polymerization in the presence of phenylamine groups contained MWNTs followed by solution blending and mould casting. Phenylamine groups grafted on the surface of MWNTs via amide bond join in the in situ polymerization and MWNTs are encapsulated by PANI coatings forming a core (MWNTs)-shell (PANI) nano-structure. DBSA doped PANI coatings swell in tetrahydrofuran (THF) and core-shell nano-structures are stabilized in epoxy solution, which is in favor of MWNTs dispersion in epoxy resin and formation of a homogenous MWNTs/Epoxy composite. After DBSA doped PANI-g-MWNTs are introduced in Epoxy, initial curing and exothermic peak temperatures as well as curing reaction enthalpy decrease, which indicates addition of DBSA doped PANI-g-MWNTs promotes curing reaction of Epoxy. Tensile strength, Young’s modulus, elongation at break, flexural strength and flexural modulus of the composite are improved by 71.7%, 42.3%, 99.8%, 55.01% and 39.86% compared with Epoxy, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

1510-1515

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Breuer and U. Sundararaj: Polym. Compos. Vol. 25 (2004), p.630.

Google Scholar

[2] V.G. Hadjiev, M.N. Iliev, S. Arepalli, P. Nikolaev and B.S. Files: Appl. Phys. Lett. Vol. 78 (2001), p.3193.

DOI: 10.1063/1.1373405

Google Scholar

[3] A. Peigney, E. Flahaut, C. Laurent, F. Chastel and A. Rousset: Chem. Phys. Lett. Vol. 352 (2002), p.20.

Google Scholar

[4] H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka and E.K. Hobbie: Nano Lett. Vol. 4 (2004), p.1789.

Google Scholar

[5] S. Banerjee, T.H. Benny and S.S. Wong: Adv. Mater. Vol. 17 (2005), p.17.

Google Scholar

[6] P. Liu: Eur. Polym. J. Vol. 41 (2005), p.2693.

Google Scholar

[7] D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. Vol. 106 (2006), p.1105.

Google Scholar

[8] U. Dettlaff-Weglikowska, J. -M. Benoit and P. -W. Chiu: Curr. Appl. Phys. Vol. 2 (2002), p.497.

Google Scholar

[9] Z. Spitalsky, L. Matejka, M. Slouf, E.N. Konyushenko, J. Kovarova, J. Zemek and J. Kotek: Polym. Composite Vol. 30 (2009), p.1378.

Google Scholar

[10] A.I. Gopalan, K.P. Lee and P. Santhosh: Comp. Sci. Technol. Vol. 67 (2007), p.900.

Google Scholar

[11] B. Philip, J. Xie, F.J.K. Abraham and V.K. Varadan: Polym Bull Vol. 53 (2005), p.127.

Google Scholar

[12] J. Xu, P. Yao, L. Liu, Z. Jiang, F. He, M. Li and J. Zou: J. Appl. Polym. Sci. Vol. 118 (2010), p.2582.

Google Scholar

[13] Q. Liang, L.Z. Gao, Q. Li, S.H. Tang, B.C. Liu and Z.L. Yu: Carbon Vol. 39 (2001), p.897.

Google Scholar

[14] Y.C. Feng, G.M. Zhou, G.P. Wang, M.Z. Qu and Z.L. Yu: Chem. Phys. Lett. Vol. 375 (2003), p.645.

Google Scholar

[15] A.M. Rao, A. Jorio, M.A. Pimenta, M.S.S. Dantas, R. Saito, G. Dresselhaus and M.S. Dresselhaus: Phys. Rev. Lett. Vol. 84 (2000), p.1820.

DOI: 10.1103/physrevlett.84.1820

Google Scholar

[16] T.M. Wu and Y.W. Lin: Polymer Vol. 47 (2006), p.3576.

Google Scholar

[17] Y. Yu, B. Che, Z. Si, L. Li, W. Chen and G. Xue: Synth. Met. Vol. 150 (2005), p.271.

Google Scholar

[18] K.C. Chang, G.W. Jang, C.W. Peng, C.Y. Lin, J.C. Shieh, J.M. Yeh, J.C. Yang and W.T. Li: Electrochim. Acta. Vol. 52 (2007), p.5191.

Google Scholar

[19] X. Lei, Y. Liu and Z. Su: Polym. Compos. Vol. 29 (2008), p.239.

Google Scholar

[20] X. Chen, J. Wang, M. Lin, W Zhong, T. Feng, X. Chen, J. Chen and F. Xue: Mater. Sci. Eng. A Vol. 492 (2008), p.236.

Google Scholar