Synthesis, Physicochemical Properties and Catalytic Performance of a Modified ZSM-5 Molecular Sieve

Article Preview

Abstract:

A modified ZSM-5 molecular sieve was prepared by the combination of recrystallization and carbon template methods. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, NH3-TPD, TEM and SEM. The results show that the modified ZSM-5 molecular sieve has double pore distribution. The diameters of the two kinds of channels are 0.51~0.56 nm and 1.4~1.6 nm, respectively. In addition, the modified HZSM-5 (H-type ZSM-5) sample mainly has moderate strength of acid sites. Finally, the alkylation of benzene with 1-dodecene olefin was used to evaluate the catalytic performance of the as-synthesized modified ZSM-5 on macromolecules. The conversions of 1-dodecene on the modified ZSM-5, ZSM-5 prepared by conventional process and aluminum-containing SBA-15 mesoporous molecular sieve are 96%, 39% and 83%, respectively. And the selectivities of long chain alkyl benzene on those are 97%, 68% and 91%, respectively. The catalytic properties of the modified ZSM-5 on macromolecules are superior to those of ZSM-5 prepared by conventional process and aluminum-containing SBA-15 mesoporous molecular sieve.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

1042-1046

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: Nature. Vol. 359 (1992), p.710.

Google Scholar

[2] K. S. Wan, Q. Liu and C. M. Zhang: J. Inorg. Mater. Vol. 18(5) (2003), p.1097.

Google Scholar

[3] K. R. Kloetstra, H. van Bekkum and J. Jansen: Chem. Commun. Vol. 12(1997), p.2281.

Google Scholar

[4] C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt and A. Carlsson: J. Am Chem. Soc. Vol. 122 (2000), p.7116.

Google Scholar

[5] A. Sakthivel, S. J. Huang, W. H. Chen, Z. H. Lan, K. H. Chen, T. W. Kim, R. Ryoo, A. S. T. Chiang and S. B. Liu: Chem. Mater. Vol. 16(16)(2004), p.3168.

Google Scholar

[6] I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson and C. J. H. Jacobsen: Chem. Mater. Vol. 13 (2001), p.4416.

DOI: 10.1021/cm011206h

Google Scholar

[7] Y. Tao, H. Kanoh and K. Kaneko: J. Am. Chem. Soc. Vol. 125 (2003), p.6044.

Google Scholar

[8] S. Wu, Y. Han, Y. C. Zou, J. W. Song, L. Zhao, Y. Di, S. Z. Liu and F. S. Xiao: Chem. Mater. Vol. 16 (2004), p.486.

Google Scholar

[9] Z. Deng, G. Li, H. Tong and T. Liu: Chem. Res. Vol. 20 (1)(2009), p.24 (In Chinese).

Google Scholar

[10] D.H. Olson, G.T. Koktailo, S.L. Lawton and W. M. Meier: J. Phys. Chem. Vol. 85(1981), p.2238.

Google Scholar

[11] Q. Guo, Y. Bai, F. Feng, T. Dou, Y. Xiao and B. Zhong: J. Fuel Chem. Techn. Vol. 27(2)(1999), p.126 (In Chinese).

Google Scholar

[12] X. Qi, S. Li, Z. Wang, X. Liu and B. Lin: Chinese J. Catal. Vol. 24(7) (2003), p.535 (In Chinese).

Google Scholar