Facile Synthesis and High Activity of Novel Ag/TiO2-NTs Composites for Hydrazine Oxidation

Article Preview

Abstract:

Novel Ag/TiO2-NTs composites have been synthesized using titanium dioxide nanotubes (TiO2-NTs) modified by (3-aminopropyl)trimethoxysilane (APS) as supports. The composites have been characterized by TEM and XRD. The better dispersion of Ag on TiO2-NTs modified by APS can be observed than that of TiO2-NTs without being modified by APS, which implies that APS is helpful for uniform nanoparticles. The electrocatalytic properties of Ag/TiO2-NTs for hydrazine oxidation were investigated in details. Excellent electrocatalytic activity was observed. The results showed that TiO2-NTs have a very good application potential as supporting materials for noble catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

1073-1078

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Zhang, A.J. Gellman: J. Phys. Chem. Vol. 95 (1991), p.433.

Google Scholar

[2] M. Avramov-Ivic, V. Jovanovic and G. Vlajnic, J. Popic: J. Electroanal. Chem. Vol. 423 (1997), p.119.

Google Scholar

[3] F. Gloaguen, J.M. Leger and C. Lamy: J. Appl. Electrochem. Vol. 27 (1997), p.1052.

Google Scholar

[4] A. Heinzel, V.M. Barragan: J. Power Sources Vol. 84 (1999), p.70.

Google Scholar

[5] A.S. Arico, S. Srinivasan, V. Antonucci: Fuel Cell Vol. 1 (2001), p.133.

Google Scholar

[6] V. Lordi, N. Yao and J. Wei: Chem. Mater. Vol. 13 (2001), p.733.

Google Scholar

[7] J.S. Yu, S. Kang, S.B. Yoon and G. Chai: J. Am. Chem. Soc. Vol. 124 (2002), p.9382.

Google Scholar

[8] D.J. Guo, H.L. Li: Electrochem. Commun. 6 (2004), p.999.

Google Scholar

[9] G.A. Camara, R.B. Lima and T. Iwasita: Electrochem. Commun. Vol. 6 (2004), p.812.

Google Scholar

[10] B. Rajesh, K.R. Thampi, J.M. Bonard, H.J. Mathieu, N. Xanthopoulos and B. Viswanathan: J. Power Sources Vol. 141 (2005 ), p.35.

Google Scholar

[11] M. Faro, D. Rosa, G. Monforte, V. Antonucci, A.S. Arico and P. Antonucci: J. Appl. Electrochem. Vol. 37 (2007), p.203.

DOI: 10.1007/s10800-006-9245-5

Google Scholar

[12] D. Hotza, J.C. Diniz da Costa: International Journal of Hydrogen Energy Vol. 33 (2008), p.4915.

Google Scholar

[13] F. Mueller, F. Jabbari and J. Brouwer:J. Power Sources Vol. 187 (2009), p.452.

Google Scholar

[14] S. Park, B. N. Popov: Fuel Vol. 8 (2009), p.2068.

Google Scholar

[15] G. Wu, Y.S. Chen and B.Q. Xu: Electrochem. Commun. Vol. 7 (2005), p.1237.

Google Scholar

[16] D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, L. Torrente-Murciano, J.M. Friedrich and F.C. Walsh; Top. Catal. Vol. 39 (2006), p.151.

DOI: 10.1007/s11244-006-0051-4

Google Scholar

[17] Z. Wang, Z.Z. Zhu, J. Shi and H.L. Li: Applied Surface Science Vol. 253 (2007), p.8811.

Google Scholar

[18] L. Torrente-Murciano, A.A. Lapkina, D.V. Bavykin, F.C. Walsh and K. Wilson: J. Catal. Vol. 245 (2007), p.272.

Google Scholar

[19] K.Y. Chan, J. Ding, J. Ren, S. Cheng and K.Y. Tsang: J. Mater. Chem. Vol. 14 (2004). p.505.

Google Scholar

[20] J. Guzman, S. Carrettin and A. Corma: J. Am. Chem. Soc. Vol. 127 (2005), p.3286.

Google Scholar

[21] B. O'Regan, M. Gratzel: Nature Vol. 353 (1991), p.737.

Google Scholar

[22] A. Hagfeldt, M. Gratzel: Chem. Rev. Vol. 95 (1995), p.49.

Google Scholar

[23] A. Fujishima, T. N. Rao and D.A. Tryk: J. Photochem. Photobiol. C Vol. 1 (2000), p.1.

Google Scholar

[24] L.R. Skubal, N.K. Meshkov and M.C. Vogt: J. Photochem. Photobiol. A Vol. 148 (2002), p.103.

Google Scholar

[25] T. Garcia, B. Solsona and S.H. Taylor: Catal. Lett. Vol. 97 (2004), p.99.

Google Scholar

[26] H.Q. Song, X.P. Qiu, F.S. Li, W.T. Zhu and L.Q. Chen: Electrochem. Commun. Vol. 9 (2007), p.1416.

Google Scholar

[27] G.M. Guo, B.B. Yu, P. Yu and X. Chen: Talanta Vol. 79 (2009), p.570.

Google Scholar

[28] M. Wang, D.J. Guo amd H.L. Li: J. Solid State Chem. Vol. 178 (2005), p.1996.

Google Scholar

[29] J.Z. Xu, W.B. Zhao, J.J. Zhu, G.X. Li and H.Y. Chen: J. Colloid Interf. Sci. Vol. 290 (2005), p.450.

Google Scholar

[30] Y.K. Zhou, L. Cao, F.B. Zhang, B.L. He and H.L. Li: J. Electrochem. Soc. Vol. 150 (2003), p A1246.

Google Scholar

[31] B.L. He, B. Dong and H.L. Li: Electrochem. Commun. Vol. 9 (2007), p.425.

Google Scholar

[32] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Langmuir Vol. 14 (1998), p.3160.

DOI: 10.1021/la9713816

Google Scholar

[33] D.J. Guo, H.L. Li: J. Colloid Interf. Sci. Vol. 286 (2005), p.274.

Google Scholar

[34] C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G.J. Jones and R.G. Compton: Analyst Vol. 131 (2006), p.106.

Google Scholar