New Waterborne Polyurethane Dispersions from the Soybean-Oil-Based Polyols by Ring Opening of ESO with Glycol

Article Preview

Abstract:

A series of polyols (GSOLs) with a range of hydroxyl numbers based on epoxidized soybean oil (ESO) were prepared by ring opening with glycol. These Polyols of hydroxyl (OH) numbers ranging from 111 to 162 mg KOH/g were obtained. The environmentally friendly soybean-oil-based waterborne polyurethane dispersions (SPU) with very promising properties have been successfully synthesized from a series of soybean-oil-based polyols (GSOLs) with different hydroxyl numbers by a polyaddition reaction with toluene 2,4-diisocyanate (2,4-TDI). The structure and thermophysical properties of the resulting SPU films have been studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and hardness testing. The experimental results showed that the functionality of the GSOLs and the hard segment content play a key role in controlling the structure and the thermophysical properties of the SPU films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

1196-1200

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Zhang, H.K. Jeon, J.R. Malsam, C.W. Herrington. Macosko. Polymer. 48, (2007), p.6656–6667.

DOI: 10.1016/j.polymer.2007.09.016

Google Scholar

[2] D. J Liaw, C.C. Huang, B. Y Liaw. Polymer. 39, (1998), pp.3529-3539.

Google Scholar

[3] B. S Kim, B.K. Kim. J. Appl. Polym. Sci. 97, (2005), p.1961-(1969).

Google Scholar

[4] D. Dieterich, W. Keberle, R. Wuest. J. Oil Colour Chem. Assoc. 53, (1970), p.363.

Google Scholar

[5] D. Dieterich, Prog. Org. Coat. 9 (1981), p.298.

Google Scholar

[6] C.S. Chern, Prog. Polym. Sci. 31, (2006), pp.443-486.

Google Scholar

[7] Y. Lu, R.C. Larock. Biomacromolecules. 7, (2006), pp.1692-2700.

Google Scholar

[8] F. Li, R.C. Larock. J. Appl. Polym. Sci. 80, (2001), pp.658-670.

Google Scholar

[9] P.P. Kundu, R.C. Larock. Biomacromolecules. 6, (2005), pp.797-806.

Google Scholar

[10] H.H. Dai, L.T. Yang, B. Lin, A.H. Yi, G. Shi. Int. J. Chem. 9, (2007), p.44.

Google Scholar

[11] B. Lin, L.T. Yang, H. H Dai, A.H. Yi, J. Am. Oil Chem. Soc. 85, (2008), p.113.

Google Scholar

[12] Yongshang Lu and Richard C. Larock. Biomacromolecules. 8, (2007). P, 3108-3114.

Google Scholar

[13] Yongshang Lu, and Richard C. Larock. Biomacromolecules. 9 (11), (2008), pp.3332-3340.

Google Scholar

[14] T.W. Pechar, G.L. Wilkes, B. Zhou, N. Luo. J. Appl. Polym. Sci. 106, (2007), p.2350–2362.

Google Scholar

[15] G. Lligadas, J.C. Ronda, M. Galia, V. Cadiz. Biomacromolecules. 8, (2007), p.686–692.

Google Scholar

[16] Z.S. Petrovic, A. Guo, I. Javni, I. Cvetkovic, D.P. Hong. Polym. Int. 57, (2008), p.275–281.

Google Scholar

[17] Z.S. Petrovic, L. T Yang, A. Zlatanic, W. Zhang, I. Javni. J. Appl. Polym. Sci. 105, (2007), p.2717–2727.

Google Scholar

[18] G. Lligadas, J.C. Ronda, M. Galia, V. Cadiz. Biomacromolecules. 7, (2006), p.3521–3526.

Google Scholar

[19] G. Lligadas, J.C. Ronda, M. Galia, V. Cadiz, Biomacromolecules. 7, (2006), p.2420–2426.

Google Scholar