[1]
W.C. Dannenmair, D.W. Haynes, C.L. Nelson: Granulomatous reaction and cyclic bony destruction associated with higher wear rates in a total knee prostheses. Clinical Orthopedic Related Research 1985; 198: 224-230.
DOI: 10.1097/00003086-198509000-00033
Google Scholar
[2]
J.M. Mirra, R.A. Marder, H.C. Amstutz: The pathology of failed total joint arthoplasty. Clinical Orthopedic Related Research 1982; 170: 175-183.
DOI: 10.1097/00003086-198210000-00023
Google Scholar
[3]
K.E. Elbert, T.M. Wright, C.M. Rimnac, et al. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions. J Biomedical Material Research 1994; 28: 181-187.
DOI: 10.1002/jbm.820280207
Google Scholar
[4]
J.P. Collier, D.K. Sperling, J.H. Currier, et al. Impact of gamma sterilization on clinical performance of polyethylene in the knee. Journal of Arthroplasty. 1996; 11(4): 377-389.
DOI: 10.1016/s0883-5403(96)80026-x
Google Scholar
[5]
G.W. Blunn, A.B. Joshi, R.J. Minns, et al. Wear in retrieved condylar knee arthroplasties. Journal of Arthroplasty. 1997; 12: 281-290.
DOI: 10.1016/s0883-5403(97)90024-3
Google Scholar
[6]
A. Wang, C. Stark, J.H. Dumbleton: Role of cyclic plastic deformation in the wear of UHMWPE acetabular cups. J Biomedical Material Research 1955; 29: 619-626.
DOI: 10.1002/jbm.820290509
Google Scholar
[7]
M. Wronga, M.B. Mayor, J.P. Collier, R.E. Jensen: The correlation between fusion defect and damage in tibal polyethylene bearings. Clinical Orthopedic Related Research 1994; 299: 92-103.
DOI: 10.1097/00003086-199402000-00013
Google Scholar
[8]
D. A. Dennis, R. D. Komistek, E. J. Northcut, et al. In vivo determination of hip joint separation and the forces generated due to impact loading conditions. J Biomechanics 2001; 34: 623-629.
DOI: 10.1016/s0021-9290(00)00239-6
Google Scholar
[9]
J. E. Nevelos, E. Ingham, C. Doyle, et al. Microseparation of the centers of alumina–alumina arti. cial hip joints during simulator testing produces clinically relevant wear and patterns. J. Arthroplasty. 2000; 15: 793-795.
DOI: 10.1054/arth.2000.8100
Google Scholar
[10]
G.R. Irwin: Analysis of stresses and strains nera the end of a crack traversing a plate. J Applied Mechanics 1957; 24: 361-364.
DOI: 10.1115/1.4011547
Google Scholar
[11]
S. Glodez, Z. Ren: Modeling of crack growth under cyclic contact loading. Theoretical and Applied Fracture Mechanics 1998; 30: 159-173.
DOI: 10.1016/s0167-8442(98)00053-6
Google Scholar
[12]
L. Pruitt, L. Bailey: Factors affecting near-threshold fatigue crack propagation behavior of orthopedic grade ultra high molecular eight polyethylene. Polymer 1998; 39(8-9): 1545-1553.
DOI: 10.1016/s0032-3861(97)00448-5
Google Scholar
[13]
V. Saikko: A Multidirectional motion pin-on-disk wear test method for prosthetic joint materials. J Biomedical Material Research 1998; 41(1): 58-64.
DOI: 10.1002/(sici)1097-4636(199807)41:1<58::aid-jbm7>3.0.co;2-p
Google Scholar
[14]
H. Oonishi: Long term clinical results of THR: clinical results of THR of an alumina head with a cross-linked UHMWPE cup. J. Orthopaedic Surgery and Traumatology 1995: 1255-1263.
Google Scholar
[15]
D.A. Baker, A. Bellare, L. Pruitt: The effect of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomedical Material Research 2003; 66A: 146-154.
DOI: 10.1002/jbm.a.10606
Google Scholar
[16]
O. Ebru, S. M. Arnaz, K.M. Orhun: Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 2006; 27: 9 17-925.
DOI: 10.1016/j.biomaterials.2005.06.025
Google Scholar