Photocatalytic Activity of W Doped Ta2O5 Particles for Methylene Blue Degradation under UV-Light

Article Preview

Abstract:

Tungsten doped tantalum oxide (W-Ta2O5) particles were synthesized by a low temperature hydrothermal method. The phase structure of W-Ta2O5 particles was characterized by X-ray diffraction (XRD). The XRD results indicated that the samples belonged to orthorhombic crystal. The photocatalytic activity of samples was investigated with degradation methylene blue (MB) under ultraviolet light. The degradation efficiency of MB under the catalysis of W-Ta2O5 particles attained 91% when the reaction time was 7 h. The kinetics of MB degradation was respect to the first-order in the presence of the photocatalysts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

281-284

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaluoi and J.M. Hermann: J Photochem Photobiol A: Chem 158 (2003), p.27.

Google Scholar

[2] L.M. Torres-Martinez, A. Cruz-Lopez, I. Juarez-Ramirez and Ma. E. Meza-de la Rosa: J Hazard Mater 165 (2009), p.774.

Google Scholar

[3] D. Ghosh and K.G. Bhattacharyya: Appl Clay Sci 20 (2002), p.295.

Google Scholar

[4] L. Gao, Y.K. Zhai, H.Z. Ma and B. Wang: Appl Clay Sci 46 (2009), p.226.

Google Scholar

[5] L.G. Yan, J. Wang, H.Q. Yu and Q. Wei: Appl Clay Sci 37 (2007), p.226.

Google Scholar

[6] J.Z. Kong, A.D. Li, X.Y. Li, H. F Zhai, W.Q. Zhang, Y.P. Gong, H. Li and D. Wu: J Solid State Chem 183 (2010), p.1359.

Google Scholar

[7] Sh. Sohrabnehad and A. pourahmad: Desalination 256 (2010), p.84.

Google Scholar

[8] C. Wen, Y.J. Zhu, T. kanbara, H.Z. Zhu and C.F. Xiao: Desalination 249 (2009), p.621.

Google Scholar

[9] H.H. Huang, D.H. Tseng and L.C. Juang: J Hazard Mater 156 (2008), p.186.

Google Scholar

[10] H.R. Pouretedal, A. Norozi, M.H. Keshavarz and Abolfazl Semnan: J Hazard Mater 162 (2009), p.674.

Google Scholar

[11] H.R. Liang, Y.J. Zhang and L.J. Guo: Acta Energy Solaris Sinica (in Chinese) 27 (2006), p.1032.

Google Scholar

[12] G.K. Zhang, M. Li, S.J. Yu, S.M. Zhang, B.B. Huang and J.G. Yu: J Colloid Interface Sci 345 (2010), p.467.

Google Scholar

[13] Y.H. Zhao, W.Y. Wang, Q.Y. Jia, Y. Gao, X.J. Wang and Y.G. Su: Acta Scientiarum Naturalium Universitatis NeiMongol 41 (2010), p.307.

Google Scholar

[14] Y.H. Zhao, M. Sun, S.W. Wang, W.M. Tong and X.J. Wang: Advance Mater Res 156-157 (2011), p.1440.

Google Scholar

[15] Y. He, Y.F. Zhu and N.Z. Wu: J. Solid State Chem. 177 (2004), p.3868.

Google Scholar

[16] Y.H. Zhao and K. Aoki: Chem Phys Lett 430 (2006), p.117.

Google Scholar

[17] D.G. Porob and P.A. Maggard: J Solid State Chem 179 (2006), p.1727.

Google Scholar