Influence of Sintering Temperature on the Electrical Properties of (La, Ta)-Doped TiO2 Capacitor-Varistor Ceramics

Article Preview

Abstract:

An investigation was made of low voltage TiO2 varistors doped with Ta2O5 and La2O3. TiO2 ceramics doped with 0.7 mol% La2O3 and 0.1 mol% Ta2O5 were sintered at different temperature ranging from 1350 to 1450°С . The influence of sintering temperature on microstructure and nonlinear properties of the (La, Ta)-doped TiO2 ceramics was studied. The varistor of 99.2 mol%-0.7 mol%La2O3-0.1 mol% Ta2O5 composite sintered at 1380°С has a maximal nonlinear coefficient of α =5.2 and a low breakdown voltage of 7.6 V/mm, which is consistent with its highest grain-boundary barriers. According to these results, it is suggested that the sample sintered at 1380°С forms the most efficient boundary barrier layer. Therefore, the sintering temperature is a very important varible which should not be despised in the project of TiO2 based varistors production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

294-297

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. R. Clarke: J. Am. Ceram. Soc. Vol. 82 (1999), p.485.

Google Scholar

[2] T.K. Gupta: J. Am. Ceram. Soc. Vol. 73 (1990), p.1817.

Google Scholar

[3] C. P. Li, J. F. Wang, H. C. Chen, W. B. Su and D. X. Zhuang: Mater. Sci. Eng. B Vol. 85 (2001), p.6.

Google Scholar

[4] S. H. Luo, Z. L. Tang, J. Y. Li and Z. T. Zhang: Ceram. Int. Vol. 34 (2008), P. 1345.

Google Scholar

[5] P. A. Santos, S. Maruchin, G. F. Menegoto and S. A. Pianaro: Mater. Lett. Vol. 60 (2006), p.1554.

Google Scholar

[6] J. Y. Li, S. G. Li and M. A. Alim: J. Mater. Sci.: Mater. Electron. Vol. 17(2006), p.503.

Google Scholar

[7] M. F. Yan, W. W. Rhodes: Appl. Phys. Lett. Vol. 40 (1982), p.536.

Google Scholar

[8] W. B. Su, J.F. Wang, H.C. Chen and C. P. Li: Mater. Sci. Eng. B Vol. 99 (2003), p.461.

Google Scholar

[9] J. Mi, Z. L. Tang, S. H. Luo and Z. T. Zhang: Key Eng. Mater. Vol. 280(2005), p.280.

Google Scholar

[10] W.Y. Wang, D.F. Zhang, T. Xu, X.F. Li and T. Zhou: J. Alloys Compd. Vol. 335 (2002), p.210.

Google Scholar

[11] F. M. Meng: Mater. Sci. Eng. B Vol. 117 (2005), p.77.

Google Scholar

[12] C.P. Li, J.F. Wang, W.B. Su, H.C. Chen and D. X Zhuang: Mater. Lett. Vol. 57 (2003) , p.1400.

Google Scholar

[13] W. Y. Wang, D. F. Zhang, T. Xu and X. L. Chen: Mater. Res. Bull. Vol. 37 (2002), p.1197.

Google Scholar

[14] L. M. Lionel and H. R. Philipp: Ceram. Bull. Vol. 65 (1986), p.639.

Google Scholar

[15] S. R. Dhage and V. Ravi: Appl. Phys. Lett. Vol. 83(2003), p.4539.

Google Scholar

[16] S. C. Navale, A. Vadivel Murugan and V. Ravi: Ceram. Int. Vol. 33 (2007), P. 301.

Google Scholar