Effect of Cu/In Ratio on Properties of CuInS2 Films Prepared by Ultrasonic Spray Pyrolysis Method

Article Preview

Abstract:

CuInS2 thin films were prepared on heated glass substrates by ultrasonic spray pyrolysis method. Structure, surface morphology and properties of films with different Cu/In ratios have been investigated. X-ray diffraction (XRD) analysis demonstrated that as-prepared CuInS2 thin films with chalcopyrite structure have a preferential orientation along the (112) direction. SEM study shows films are relatively dense and smooth, but the much bigger grains and the large coherent agglomerates appear in films (Cu/In>1.25) due to the appearance of phase Cu2S. CuInS2 thin film (Cu/In=1.25) has a strong visible absorption and its energy band gap comes up to 1.45eV.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 199-200)

Pages:

1936-1939

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.L. Chopra, P.D. Paulson, V. Dutta. Prog. Photovolt: Res. Appl. Vol. 12 (2004), p.69.

Google Scholar

[2] J. Klaer, I. Luck and A. Boden, et al. Thin Solid Films. Vol. 534 (2003), pp.431-432.

DOI: 10.1016/s0040-6090(03)00256-6

Google Scholar

[3] R. Klenk, J. Klaer, R. Scheer, et al. Thin Solid Films. Vol 509 (2005), pp.480-481.

DOI: 10.1016/j.tsf.2004.11.042

Google Scholar

[4] S. Bini, K. Bindu and M. Lakshmi, Renewable Energy. Vol 20 (2000), p.405.

Google Scholar

[5] A. Antony, A.S. Asha, R. Yoosuf, et al. Solar Energy Materials and Solar Cells. Vol 81(2004), p.407.

DOI: 10.1016/j.solmat.2003.11.025

Google Scholar

[6] A. N.Y. Samaan, S.M. Wasim, A.E. Hill, et al. Phys. Stat. Sol. Vol A96 (2006), p.317.

Google Scholar

[7] A. Bollero, J.F. Trigo, J. Herrero, et al. Thin Solid Films. Vol 7 (2009), p.517.

Google Scholar

[8] T. T. John, K. C. Wilson, P.M. Kumar, et al. Phys. Stat. Sol. Vol A202(2005), p.79.

Google Scholar

[9] T. Terasako, Y. Uno, S. Inoue, et al. Phys. Stat. Sol. Vol 3(2006), p.2588.

Google Scholar

[10] J. Hofhuis, J. Schoonman, A. Goossens. J. phys. Chem. C. Vol 112(38) (2008), p.15052.

Google Scholar

[11] M. Krunks, O. Kijatkina, A. Mere, et al. Solar Energy Materials and Solar Cells. Vol 87 (2005), pp.207-214.

DOI: 10.1016/j.solmat.2004.07.024

Google Scholar

[12] M. Krunks, V. Milli, O. Bijakina, et al. Thin Solid Films. Vol 61(2000), p.361.

Google Scholar

[13] H. Bouzouita, N. Bouguila. Renew. Energy. Vol 17(1999), p.85.

Google Scholar

[14] A. H. Reshak, S. Auluck, I.V. Kityk, et al. Appl. Phys. Vol 94(2009), p.315.

Google Scholar