Meniscus and Viscous Forces during the Nanoscale Separation of Sphere-on-Sphere Contact Surfaces

Article Preview

Abstract:

When two surfaces are brought into contact or at small separations, the liquid between them forms meniscus, which contributes to adhesion and friction. The increased adhesive force and friction are always the substantial cause leading to micro/nanodevices’s failure. In this study, a dynamic contact model of sphere-on-sphere surfaces during nanoscale separation is presented. A numerical analysis of meniscus and viscous forces based on the dynamic contact model has been carried out. During the separation process, the effects of separation distance, initial meniscus height, surface wettability and separating time on meniscus and viscous forces between the contact surfaces are investigated. The results of numerical solution revealed the adhesion mechanism of sphere-on-sphere surfaces during the separation with liquid mediated. The analyses provide a fundamental understanding of the separating process of two sphere surfaces. It is also useful for the design of the de-wetting and antisticking micro/nanoscale surfaces in various devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 199-200)

Pages:

739-744

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M. Lee and T. H. Kwon: Nanotechnology. Vol. 17(2006), p.3189.

Google Scholar

[2] B. Bhushan, M. Nosonovsky and Y. C. Jung: J. R. Soc. Interface. Vol. 4(2007), p.643.

Google Scholar

[3] Y. Song, R. P. Nair, M. Zou and Y. A. Wang: Thin Solid Films. Vol. 518(2010), p.3801.

Google Scholar

[4] B. Bhushan and Y. C. Jung: Nanotechnology. Vol. 17(2006), p.2758.

Google Scholar

[5] S. H. Kim, D. B. Asay and M. T. Dugger: Nanotoday. Vol. 2(2007), p.22.

Google Scholar

[6] S. S. Liu and C. H. Zhang: J. Phys: Conference Series. Vol. 188(2009), p.1.

Google Scholar

[7] S. B. Cai, B. Bhushan: Mater. Sci. Eng. R. Vol. 61(2008), p.78.

Google Scholar

[8] B. Bhushan and W. Peng: Appl. Mech. Rev. Vol. 55(2002), p.435.

Google Scholar

[9] H. J. Butt and M. Kappl: Adv. Colloid Interface Sci. Vol. 146(2009), p.48.

Google Scholar

[10] R. A. Fisher: J. Agric. Sci. Vol. 16(1926), p.492.

Google Scholar

[11] C. Gao, P. H. Dai, A. Homola and J. Weiss: Trans. ASME. Vol. 120(1998), p.358.

Google Scholar

[12] Y. F. Peng, Y.B. Guo and Y. Q. Hong: J. Tribo. Vol. 131(2009), p.024504.

Google Scholar

[13] Z. Wei and Y. P. Zhao: J Phys D: Appl Phys. Vol. 40(2007), p.4368.

Google Scholar

[14] M. Nosonovsky and B. Microsyst: Technol. Vol. 11(2005), p.535.

Google Scholar

[15] S. T. Patton, W. D. Cowan, K. C. Eapen, et al.: Tribol. Lett. Vol. 9(2001), p.199.

Google Scholar

[16] J. L. Parker, H. K. Christenson and B. W. Ninhan: Rev. Sci. Instrum. Vol. 60(1989), p.3135.

Google Scholar

[17] S. S. Liu, Z. H. Zhang and J. M. Liu: Acta Phys. Sinica. Vol. 59(2010), p.6902 (in Chinese).

Google Scholar

[18] S. B. Cai and B. Bhushan: Nanotechnology. Vol. 18(2007), p.465704.

Google Scholar