Mercury Sorption on Chitosan

Article Preview

Abstract:

Mercury sorption on chitosan was investigated in batch and continuous systems. Chitosan sorption properties were determined through sorption isotherms. Langmuir and Freundlich equations were used for the modeling of isotherms at pH 5. In batch systems, maximum sorption capacities reached 550 mg Hg/g. Sorption kinetics have been studied as a function of sorbent particle size and stirring rate. Dynamic removal of mercury was tested in a fixed bed reactor investigating the following parameters: particle size, column size, flow velocity and metal ion concentration. Clark and Adams-Bohart models were evaluated for the simulation of breakthrough curves. This study shows that chitosan is an effective sorbent for the treatment and recovery of mercury from dilute effluents at near neutral pH.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 20-21)

Pages:

635-638

Citation:

Online since:

July 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kawamura, H. Yoshida, S. Asai and H. Tanibe: J. Chem. Eng. Japan Vol. 31 (1) (1998), p.1.

Google Scholar

[2] D. Karunasagar, M. V. Balarama and S. V. Rao: J. Hazard. Mater. Vol. B118 (2005), p.133.

Google Scholar

[3] M. Tsezos: Hydrometallurgy Vol. 59 (2001), p.241.

Google Scholar

[4] A. Hammaini, F. Gonzalez, A. Ballester, M. L. Blázquez. and J. A Muñoz: Submitted to J. Env. Management (2006).

Google Scholar

[5] B. Volesky: Sorption and Biosorptio, (Bx-sorbex Inc. St. Lambert, Quebec 2003).

Google Scholar

[6] E. Guibal: Sep. Purif. Tech. Vol. 38 (2004), p.43.

Google Scholar

[7] R. Juang, F. Wu, and R. Tseng: Wat. Res. Vol. 33 (10) (1999), p.2403.

Google Scholar

[8] R. Kumar: React. Funct. Polym. Vol. 46 (2000), p.1.

Google Scholar

[9] F. Peirano: MSc. Project. Marseille University (2003).

Google Scholar

[10] I. Safarik: Wat. Res. Vol. 29 (1) (1995), p.101.

Google Scholar

[11] A. Saglam, Y. Yalcinkaya, A. Denizli, M.Y. Arica, O. Genc and S. Bektas: Microchem. J. Vol. 71 (2002), p.73.

Google Scholar

[12] Y. Kaçar, C. Arpa, S. Tan and A. Denizli: Process Biochem. Vol. 37 (2002), p.601.

Google Scholar

[13] M. Chiou and H. Li: J. Hazard. Mater. Vol. B93 (2002), p.233.

Google Scholar

[14] H. Tran and F. Roddick: Wat. Res. Vol. 33 (13) (1999), p.3001.

Google Scholar

[15] S. Ghorai and K. Pant: Sep. Purif. Technol. Vol. 42 (2005), p.265.

Google Scholar

[16] Z. Aksu and F. Gonen: Process Biochem. Vol. 39 (2004), p.599.

Google Scholar

[17] Y. Sag and Y. Aktay: Process Biochem. Vol. 36 (2001), p.1187.

Google Scholar

[18] J. Shen and Z. Duvnjak: Process Biochem. Vol. 40 (2005), p.3446.

Google Scholar

[19] O. Hamdaoui: J. Hazard. Mater. Vol. B138 (2006), p.293.

Google Scholar

[20] M. Tsezos: Hydrometallurgy Vol. 59 (2001), p.395.

Google Scholar

[21] R. Han, W. Zou, H. Li, Y. Li and J. Shi: J. Hazard. Materials Vol. B137 (2006), p.934.

Google Scholar

[22] E. Guibal, C. Milot and Jean Roussy: Wat. Env. Res. Vol. 71 (1) (1999), pp.10-0. 2 0. 4 0. 6 0. 8 1 0 100 200 300 Time (h) C / Co 0. 64 ml/min 1. 28 ml/min 1. 9 ml/min 0 0. 2 0. 4 0. 6 0. 8 1 0 50 100 150 200 250 Time (h) C / Co G2 G3 G4 a) b).

Google Scholar