Mercury Sorption on Chitosan

Abstract:

Article Preview

Mercury sorption on chitosan was investigated in batch and continuous systems. Chitosan sorption properties were determined through sorption isotherms. Langmuir and Freundlich equations were used for the modeling of isotherms at pH 5. In batch systems, maximum sorption capacities reached 550 mg Hg/g. Sorption kinetics have been studied as a function of sorbent particle size and stirring rate. Dynamic removal of mercury was tested in a fixed bed reactor investigating the following parameters: particle size, column size, flow velocity and metal ion concentration. Clark and Adams-Bohart models were evaluated for the simulation of breakthrough curves. This study shows that chitosan is an effective sorbent for the treatment and recovery of mercury from dilute effluents at near neutral pH.

Info:

Periodical:

Advanced Materials Research (Volumes 20-21)

Edited by:

Axel Schippers, Wolfgang Sand, Franz Glombitza and Sabine Willscher

Pages:

635-638

Citation:

K. Campos et al., "Mercury Sorption on Chitosan", Advanced Materials Research, Vols. 20-21, pp. 635-638, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] Y. Kawamura, H. Yoshida, S. Asai and H. Tanibe: J. Chem. Eng. Japan Vol. 31 (1) (1998), p.1.

[2] D. Karunasagar, M. V. Balarama and S. V. Rao: J. Hazard. Mater. Vol. B118 (2005), p.133.

[3] M. Tsezos: Hydrometallurgy Vol. 59 (2001), p.241.

[4] A. Hammaini, F. Gonzalez, A. Ballester, M. L. Blázquez. and J. A Muñoz: Submitted to J. Env. Management (2006).

[5] B. Volesky: Sorption and Biosorptio, (Bx-sorbex Inc. St. Lambert, Quebec 2003).

[6] E. Guibal: Sep. Purif. Tech. Vol. 38 (2004), p.43.

[7] R. Juang, F. Wu, and R. Tseng: Wat. Res. Vol. 33 (10) (1999), p.2403.

[8] R. Kumar: React. Funct. Polym. Vol. 46 (2000), p.1.

[9] F. Peirano: MSc. Project. Marseille University (2003).

[10] I. Safarik: Wat. Res. Vol. 29 (1) (1995), p.101.

[11] A. Saglam, Y. Yalcinkaya, A. Denizli, M.Y. Arica, O. Genc and S. Bektas: Microchem. J. Vol. 71 (2002), p.73.

[12] Y. Kaçar, C. Arpa, S. Tan and A. Denizli: Process Biochem. Vol. 37 (2002), p.601.

[13] M. Chiou and H. Li: J. Hazard. Mater. Vol. B93 (2002), p.233.

[14] H. Tran and F. Roddick: Wat. Res. Vol. 33 (13) (1999), p.3001.

[15] S. Ghorai and K. Pant: Sep. Purif. Technol. Vol. 42 (2005), p.265.

[16] Z. Aksu and F. Gonen: Process Biochem. Vol. 39 (2004), p.599.

[17] Y. Sag and Y. Aktay: Process Biochem. Vol. 36 (2001), p.1187.

[18] J. Shen and Z. Duvnjak: Process Biochem. Vol. 40 (2005), p.3446.

[19] O. Hamdaoui: J. Hazard. Mater. Vol. B138 (2006), p.293.

[20] M. Tsezos: Hydrometallurgy Vol. 59 (2001), p.395.

[21] R. Han, W. Zou, H. Li, Y. Li and J. Shi: J. Hazard. Materials Vol. B137 (2006), p.934.

[22] E. Guibal, C. Milot and Jean Roussy: Wat. Env. Res. Vol. 71 (1) (1999), pp.10-0. 2 0. 4 0. 6 0. 8 1 0 100 200 300 Time (h) C / Co 0. 64 ml/min 1. 28 ml/min 1. 9 ml/min 0 0. 2 0. 4 0. 6 0. 8 1 0 50 100 150 200 250 Time (h) C / Co G2 G3 G4 a) b).