Dynamic Removal of CO2 on MDEA-Loaded SBA-15 for Biogas Upgrading

Article Preview

Abstract:

A promising adsorbent for CO2 removal was prepared by introducing methyl-diethyl-amine (MDEA) into mesoporous silica SBA-15 using impregnation method. The MDEA modified adsorbents were characterized by X-ray powder diffraction (XRD) and nitrogen adsorption/desorption. Surface area, pore size and pore volume of MDEA-modified SBA-15 adsorbent decreased with the increasing of MDEA loading, while the loaded MDEA could not change the structure of the adsorbents. The adsorption performance of CO2 on the adsorbents was conducted in a dynamic setup. Dynamic adsorption performance changed with change of the amount of loaded MDEA. In addition, not only the adsorbent was regenerable by purging with the purified gas, but also the adsorption performance is stable in adsorption cycles. The results indicated that the MDEA modified adsorbents were novel for removing CO2 for biogas upgrading.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

1245-1249

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jaramillo, P.; Matthews, H. S. Environ. Sci. Technol., Vol. 39 (19) (2005) p.83.

Google Scholar

[2] Knaebel, K. S.; Reinhold, H. E. Adsorption Vol. 9(1) (2003)p.87.

Google Scholar

[3] Lohila, A.; Laurila, T.; Tuovinen, J. P.; Aurela, M.; Hatakka, J.; Thum, T.; Pihlatie, M.; Rinne, J.; Vesala, T. Environ. Sci. Technol. Vol. 41 (8) (2007) p.2717.

DOI: 10.1021/es061631h

Google Scholar

[4] Sarkar, S. C.; Bose, A. Energy Conv. Manag Vol. 38 (1997) p. S105.

Google Scholar

[5] F. Foeth; M. Andersson; H. Bosch; G. Aly; T. Reith. Sep. Sci. Technol. Vol. 29(1) (1994) p.93.

Google Scholar

[6] S. N. Vyas; Patwardhan S. R.; Gupta indu; Burra Vidya. Sep. Sci. Technol. Vol. 26(10-11) (1991) p.1419.

Google Scholar

[7] Kapoor A.; Yang R.T. Chem. Eng. Sci. Vol. 44 (8) (1989) p.1723.

Google Scholar

[8] Ranjani V. Siriwardane; Ming-Shing Shen; Edward P. Fishe; and James A. Poston. vVol. 15 (2) (2001) p.279.

Google Scholar

[9] Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge C.T.; Schmit, K.D.; Chu, C.T. -W.; Olson, D.H.; Sheppard E.W.; McCullen, S.B.; Higgins, J.B.; Schlenkert, J.L. J. Am. Chem. Soc. Vol. 114 (27) (1992) p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[10] Peter J. E. Harlick and Abdelhamid Sayari. Ind. Eng. Chem. Res. Vol. 45 (9) (2006) p.3248.

Google Scholar

[11] Norihito Hiyoshi; Katsunori Yogo; Tatsuaki Yashima. Micro. Meso. Mater. Vol. 84 (1-3) (2005) p.357.

Google Scholar

[12] Helen Y. Huang and Ralph T. Yang. Ind. Eng. Chem. Res. Vol. 42(12) (2003) p.2427.

Google Scholar

[13] Robert S. Franchi; Peter J. E. Harlick; Abdelhamid Sayari. Ind. Eng. Chem. Res. Vol. 44 (21) (2005) p.8007.

Google Scholar

[14] XC Xu, CS Song; JM. Andresen; BG. Miller; AW. Scaroni. Micro. Meso. Mater Vol. 62 (1-2) (2003) p.29.

Google Scholar

[15] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc Vol. 120(24) (1998) p.6024.

Google Scholar

[16] Zhao, D.; Y Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock. Science Vol. 279(5350) (1998) p.548.

DOI: 10.1126/science.279.5350.548

Google Scholar