[1]
M. Kuramochi, G. Karypis. Frequent Subgraph Discovery, IEEE Berkeley: (2001).
Google Scholar
[2]
W. Ren, Y. Zhou. FSM- A Frequent Subgraph Mining Algorithm Based on Subgraph and Structure Isomorphism, Journal of Southwest University, 2008-06(6).
Google Scholar
[3]
L. Thomas, R. V. Satyanarayana. MARGIN: Maximal Frequent Subgraph Mining, New York: Springer Press, (2005).
Google Scholar
[4]
Y. L. WANG, B. R. YANG, et al. A new algorithm for mining maximal frequent subgraph, Journal of System Simulation, 2008, 20 (18): 4872-4877.
Google Scholar
[5]
Z. T. HU, L. F. DONG, X. WANG. A Study on the Methods of Graph-Based Data Mining, Computer Engineering, 2006, 32(3): 76-78.
Google Scholar
[6]
D. Delling, M. Gaertler and D. Wagner. Generating significant graph clusterings. Proceedings of the European Conference of Complex Systems ECCS'06, (2006).
Google Scholar
[7]
M. Hiroshi. Pattern discovery from graph-structured data- A data mining perspective. Lecture Notes in computer Science, 2007: 12-22.
DOI: 10.1007/978-3-540-73325-6_2
Google Scholar
[8]
M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. Proceedings of IEEE the 2001 International Conference on Data Mining(ICDM), November 2001: 313-320.
DOI: 10.1109/icdm.2001.989534
Google Scholar
[9]
J. Z. Mohammed, Member. Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and data Engineering, 2000, 12(3): 372-390.
Google Scholar
[10]
H. P. Kriegel, S. Schonauer. Similarity Search in Structured Data. In Proceedingsof the 5th Conference on Data Warehousing and Knowledge Discovery, Prague, Czech Republic, 2003: 309-319.
DOI: 10.1007/978-3-540-45228-7_31
Google Scholar