[1]
W. Lee, S. Stolfo, and K. Mok. A data mining framework for building intrusion detection models. In IEEE Symposium on Security and Privacy, pages 120-132, (1999).
DOI: 10.1109/secpri.1999.766909
Google Scholar
[2]
W. Lee, K. W. Mok, and S. J. Stolfo. Mining audit data to build intrusion detection models. In Fourth International Conference on Knowledge Discovery and Data Mining, pages 66–72, (1998).
DOI: 10.1145/312129.312212
Google Scholar
[3]
Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate Generation. In Data Mining and Knowledge Discovery, pages 1-8, (2004).
DOI: 10.1023/b:dami.0000005258.31418.83
Google Scholar
[4]
R. Agrawal, R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487–499, (1994).
Google Scholar
[5]
D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset algorithm for transactional databases. In ICDE, pages 443–452, (2001).
DOI: 10.1109/icde.2001.914857
Google Scholar
[6]
Zengyou He, and Xiaofei Xu. FP-Outlier: Frequent Pattern Based Outlier Detection. In Computer Science and Information Systems, pages 1-6, (2005).
DOI: 10.2298/csis0501103h
Google Scholar
[7]
Kazuyo Narita, and Hiroyuki Kitagawa. Outlier Detection for Transaction Databases using Association Rules. In Lecture Notes in Computer Science, pages 1-7, (2008).
Google Scholar
[8]
T. Imielinski, A. Swami, and R. Agarwal. Mining association rules between sets of items in large databases. In Proceedings of the ACM SIGMOD conference on management of data, pages 207 – 216, (1993).
DOI: 10.1145/170036.170072
Google Scholar
[9]
S.J. Stolfo, et al., 1999. KDD-99 dataset. Available: http: /www. kdd. ics. uci. edu/databases/kddcup99/kddcup99. html.
Google Scholar
[10]
E-Business & Intelligent Enterprise Computing Research Center. AlphaMiner 2. 0. Available: http: / www. alphaminer. org.
Google Scholar
[6]
P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).
Google Scholar