A Stackelberg Game Approach to Mixed H2/H Robust Control for Singular Bilinear Systems

Article Preview

Abstract:

The H2/ H robust control problem is formulated as a Stackelberg differential game where the leader minimizes an H2 criterion while the follower deals with the H constraint. For a closed-loop information structure in the game, the necessary conditions for the existence of a solution are derived for the infinite horizon case. In the end, the simulation of a numerical example is presented.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

1839-1847

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mohler, R. R. Nonlinear systems: V. 2 Application to bilinear control. Englewood Cliffs, NJ: Prentice-Hall (1991).

Google Scholar

[2] Chen, M. S. Exponential stabilization of a constrained bilinear system. Automatica, 34(8) (1998), p.989–992.

DOI: 10.1016/s0005-1098(98)00037-5

Google Scholar

[3] Chen, M. S., & Tsao, S. T. Exponential stabilization of a class of unstable bilinear systems. IEEE Transaction on Automatic Control, 45(5) (2000), p.989–992.

DOI: 10.1109/9.855570

Google Scholar

[4] Lu, G. P., Zheng, Y. F., & Zhang, C. S. Dynamical output feedback stabilization of MIMO bilinear systems with undamped natural response. Asian Journal of Control, 5(2) (2003), p.251–260.

DOI: 10.1111/j.1934-6093.2003.tb00116.x

Google Scholar

[5] Lewis, F. L., Mertzios, B. G., & Marszalek, W. Analysis of singular bilinear systems using Walsh functions. IEEE Proceedings-Control Theory and Applications. 138(2) (1991), p.89–92.

DOI: 10.1049/ip-d.1991.0012

Google Scholar

[6] Zasadzinski, M., Ali, H. S., Rafaralahy, H., & Magarotto, E. Disturbance decoupled diagnostic observer for singular bilinear systems. In Proceedings of the American control conference (Vol. 2) (2001), p.1455–1460.

DOI: 10.1109/acc.2001.945929

Google Scholar

[7] Zasadzinski, M., Magarotto, E., Rafaralahy, H., & Ali, H. S. Residual generator design for singular bilinear systems subjected to unmeasurable disturbances: An LMI approach. Automatica, 39 (2003), p.703–713.

DOI: 10.1016/s0005-1098(02)00301-1

Google Scholar

[8] M Jungers et. al. A Stackelberg Game Approach to Mixed H2/H∞ Control. Proceedings of the 17th World Congress, The International Federation of Automatic Control Seoul, Korea, July 6-11, 2008, pp.3940-3945.

DOI: 10.3182/20080706-5-kr-1001.00663

Google Scholar

[9] M. Simaan and J. B. Cruz, Jr. On the Stackelberg strategy in nonzero-sum games, J. Optim. Theory Appl., vol. 11(5) (1973), p.533–555.

DOI: 10.1007/bf00935665

Google Scholar

[10] X. Chen and K. Zhou. Multiobjective H2/H∞ control design. SIAM Journal Control Optimization, 40(2) (2001), p.628–660.

Google Scholar

[11] D.J.N. Limebeer B.D.O. Anderson, and B. Hendel. A Nash game approach to mixed H2/H∞ control. IEEE Transactions On Automatic Control, 39(1) (1994), p.69–82.

DOI: 10.1109/9.273340

Google Scholar

[12] H. O. Florentino and R. M. Sales. Nash game and mixed H2/H∞ control. Proceedings of the American Control Conference, Albuquerque, NM, USA (1997), p.3521–3525.

Google Scholar