The Research Progress of Melanin

Article Preview

Abstract:

The sources of melanin and the sorts of melanin are introduced. New techniques for extraction and analysis of natural melanin were introduced. New analytical techniques are high performance liquid chromatography, high-speed countercurrent chromatography, high performance capillary electrophoresis and chromatography-mass spectrometry. The relationship of polyketide melanogenesis molecular biology to that of nonmelanin-producing pathways in a wide range of fungi and other organisms is discussed. The applications of melanin are introduced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

2057-2060

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen, S. R, Jiang, B, Zheng, J. X, Xu, G. Y, Li, J. Y, & Yang, N: Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chemistry, 111, 745−749. Chua, S. C, Tan, C. P, Mirhosseini, H, Lai, O. M, Long.

DOI: 10.1016/j.foodchem.2008.04.053

Google Scholar

[2] Riley, P. A. (1997): Melanin. The International Journal of Biochemistry & Cell Biology, 29 (11), 1235−1239.

Google Scholar

[3] Prota, G: Progress in the chemistry of melanins and related metabolites. Med. Res. Rev. 8: 525–556; (1988).

DOI: 10.1002/med.2610080405

Google Scholar

[4] G. Prota: Melanins and Melagenesis, Academic, San Diego, (1992).

Google Scholar

[5] Sarna, T: Properties and function of ocular melanin a photophysical view. J. Photochem. Photobiol. Biol. 12: 215–258; (1992).

Google Scholar

[6] Wang, H. Pan, Y. Tang, X. & Huang, Z: Isolation and characterization of melanin from Osmanthus fragrans' seeds. LWT, 39, 496−502. (2006).

DOI: 10.1016/j.lwt.2005.04.001

Google Scholar

[7] Wu, Y. Shan, L. Yang, S. & Ma, A: Identification and antioxidant activity of melanin isolated from Hypoxylon archeri, a companion fungus of Tremella fuciformis. Journal of Basic Microbiology, 48, 217−221. (2008).

DOI: 10.1002/jobm.200700366

Google Scholar

[8] S.I. Kotob, S.L. Coon, E.J. Quintero, R.M. Weiner. Appl. Environ. Microbiol. 61 (1995) 1620.

Google Scholar

[9] Crip pa R, Horak V, Prota G, Svoronos P, Wolfram L: Chemistry of melanins. In: Brossi A, ed. The Alkaloids. New York: Academic Press, Inc.; 1989. p.253–323.

DOI: 10.1016/s0099-9598(08)60085-1

Google Scholar

[10] Waka matsu K, Fujikawa K, Zucca FA, Zecca L, Ito S: The structure of neuromelanin as studied by chemical degradative methods. J Neurochem 2003; 86: 1015–1023.

DOI: 10.1046/j.1471-4159.2003.01917.x

Google Scholar

[11] Butler, M. J. and A. W. Day. 1998: Fungal melanins: a review. Can. J. Microbiol. 44: 1115–1136.

DOI: 10.1139/w98-119

Google Scholar

[12] Bell, A. A., and M. H. Wheeler: Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol. 24: 411–451. (1986).

DOI: 10.1146/annurev.py.24.090186.002211

Google Scholar

[13] Polacheck, I., and K. J. Kwon-Chung: Melanogenesis in Cryptococcus neoformans. J. Gen. Microbiol. 134: 1037–1041. ( 1988).

DOI: 10.1099/00221287-134-4-1037

Google Scholar

[14] Brumbaugh JA. Ultrastructural differences between forming eumelanin and pheomelanin as revealed by the pink-eye mutation in the fowl. Dev Bio 1968; 18: 375–390.

DOI: 10.1016/0012-1606(68)90047-x

Google Scholar

[15] Sealy RC, Hyde JS, Felix CC, Menon IA, Prota G: Eumelanins and pheomelanins: Characterization by electron spin resonance spectroscopy. Science 1982; 217: 545–547.

DOI: 10.1126/science.6283638

Google Scholar

[16] Ana M. Gómez-Marín , Carlos I. Sánchez: Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis. Journal of Non-Crystalline Solids 356 (2010) 1576–1580.

DOI: 10.1016/j.jnoncrysol.2010.05.054

Google Scholar

[17] U. Itoh: Enhancement of photoconductivity by detrapping in anth racene crystal. J. Phys. Soc. Jpn. 35 (1973) 515–517.

Google Scholar

[18] S. Ito, K. Fujita: Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 144 (1985) 527–536.

DOI: 10.1016/0003-2697(85)90150-2

Google Scholar

[19] M. Latocha, E. Chodurek, S. Kurkiewicz, L. Swiatkowska, T. Wilczok, J. Anal. Appl. Pyrol. 56 (2000) 89.

Google Scholar

[20] N. Kollias, R.M. Sayre, L. Zeise, M.R. Chedekel. Photoprotection racene crystal. J. Phys. Soc. Jpn. 35 (1973) 515–517.

Google Scholar

[21] Ito, S: Reexamination of the structure of eumelanin. Biochim. Biophys. Acta 883: 155–161; (1986).

Google Scholar

[22] Manning, J. T., Bundred, P. E., & Henzi, P: Melanin and HIV in sub-Saharan Africa. Journal of Theoretical Biology, 223, 131−133. (2003).

DOI: 10.1016/s0022-5193(03)00070-5

Google Scholar

[23] Sava, V. M., Yang, S. M., Hong, M. Y., Yang, P. C., & Huang, G. S: Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chemistry, 73, 117−184. (2001).

DOI: 10.1016/s0308-8146(00)00258-2

Google Scholar

[24] Montefiori DC, Zhou J: Selection antiuinal activity of synthetic L-tyronsine and L-Dopa melanins against human immunodeficiency virus in vitro. Antiviral Res(1991), 1: 11~20.

DOI: 10.1016/0166-3542(91)90037-r

Google Scholar