Study of the Properties of Poly-P-Phenylene-Benzimidazole-Terephthalamide Fiber Material

Article Preview

Abstract:

The properties of the fiber material, which prepared from the high-performance heterocyclic polymer poly-p-phenylene-benzimidazole-terephthalamide (PBIA), were investigated. Poly-m-phenylene isophthalamide (PMIA) and poly-p-phenylene terephthalamide (PPTA) fibers were also studied, for comparison, under the same experimental conditions. Thermogravimetry(TG) and thermogravimetry coupled to Fourier transform infrared spectroscopy(TG-FTIR) were used to study the properties of these fibers. The results show that PBIA fiber has better tensile properties, thermal stability than that of PMIA and PPTA fibers. The onset degradation temperature of PBIA is the highest, namely 421°C in nitrogen. TG-FTIR provides information on the compositions of the pyrolyzates as well as their relationship to the structures of the polyamides. Analysis of the results indicates that a hydrolytic mechanism plays a leading role at lower temperature, and a homolytic mechanism is dominant at higher temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 204-210)

Pages:

919-923

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Serge B, Xavier F. Fire Mater, 2002, 26: 155.

Google Scholar

[2] Ziyi Ge, Teruaki Hayakawa, Shinji Ando, Mitsuru Ueda, Toshiyuki Akiike, Hidetoshi Miyamoto, Toru Kajita and Masa-aki Kakimoto. Chem. Mater., 2008, 20 (7): 2532–2537.

DOI: 10.1021/cm7035458

Google Scholar

[3] Puripong Totsatitpaisan; Suzana P. Nunes; Kohji Tashiro; Suwabun Chirachanchai. Solid State Ionics, 2009, 180(9-10): 738-745.

DOI: 10.1016/j.ssi.2009.02.032

Google Scholar

[4] Ferreiro, JJDe La Campa, JGLozano, AEDe Abajo. J Polym Sci Part A: Polym Chem , 2008, 46: 7566-7577.

Google Scholar

[5] K E Perepelkin, O B Malanina, M O Basok. Fibre chemistry, 2005, 37(3): 196-198.

Google Scholar

[6] Hearle JWS.High-performance fibers.Beijing:China Textile & Apparel Press, pp.136-138, pp.142-146 (2004).

Google Scholar

[7] P K Roy, P Surekha, C Rajagopal. Express Polymer Letters, 2007, 1 (4): 208–216.

Google Scholar

[8] Hyungsam Choi, Im Sik Chung, Kipyo Hong, Chan Eon Park, Sang Youl Kim. Polymer, 2008, 49(11): 2644-2649.

Google Scholar

[9] Liau C-K, Yang C-K, Viswanath S. Polym. Eng. Sci. 1996, 36: 2589.

Google Scholar

[10] Mohamed N A, A-Dossary O H. Polym. Degrad. Stab., 2003; 79(1): 61-75.

Google Scholar

[11] A L Bhuiyan. Eur. Polvnl. J., 1983, 19(3): 195-198.

Google Scholar

[12] Linda J. Broadbelt, Stephen Dziennik. Polym. Degrad. Stab., 1994, 44: 137-146.

Google Scholar

[13] Brown, J. R. & Power, A. J., Polyrn. Degrad. Stab., 1982, (4): 479.

Google Scholar

[14] Tseitlin, G. M., Korshak, V. V., Atrushkevich, A. A., Moiseyev, Yu. V. & Khomutov, V. A., Polym. Sci. USSR. 1978, 20: 971.

DOI: 10.1016/0032-3950(78)90295-2

Google Scholar

[15] Robert T Conley, James J Kane, Subrata Ghosh. Polymer chemistry. 1972: 245-248.

Google Scholar

[16] Musto P, Karasz F E, Macknight W J. Polymer, 1993, 34 (14): 2934 - 2945.

Google Scholar