Dielectric and Piezoelectric Properties of Lead-Free (Na0.5K0.5)NbO3- Bi0.5(Na0.85K0.15)0.5TiO3 Ceramics

Article Preview

Abstract:

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3–Bi0.5(Na0.85K0.15)0.5TiO3 [NKN-BNKT]. (Na0.5K0.5)NbO3 with 2 ~ 6 mol% Bi0.5(Na0.85K0.15)0.5TiO3 has been prepared following the conventional mixed oxide process. A morphotropic phase boundary (MPB) between orthorhombic (O) and hexagonal (H) was found at the composition 0.96NKN-0.04BNKT with correspondingly enhanced dielectric and piezoelectric properties. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp) and thickness coupling coefficient (kt)of 0.96NKN-0.04BNKT ceramics were 1273, 34% and 38%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 211-212)

Pages:

152-155

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Y. Chu, W. Water, Y.D. Juang, J. T. Liaw, and S. B. Da: Ferroelectrics, Vol. 297 (2003), p.11.

Google Scholar

[2] M. Matsubara, T. Yamaguchi, and S. Hirano: Jpn. J. Appl. Phys. Vol. 44 (2005), p.6136.

Google Scholar

[3] M. D. Maeder, D. Damjanovic and N. Setter: J. Electroceram., Vol. 13 (2004), p.385.

Google Scholar

[4] Y. Guo, K. Kakimoto, and H. Ohsato: Jpn. J. Appl. Phys. Vol. 43, (2004), p.6662.

Google Scholar

[5] C. H. Wang: J. Ceram. Soc. Jpn. Vol. 117, (2009), p.680.

Google Scholar

[6] Y. Guo, K. Kakimoto, and H. Ohsato: Appl. Phys. Lett. Vol. 85, (2004), p.4121.

Google Scholar

[7] Y. Guo, K. Kakimoto, H. Ohsato: Mater. Lett. Vol. 59, (2005), p.241.

Google Scholar

[8] Y. Guo, K. Kakimoto, and H. Ohsato: Solid State Commun., Vol. 129, (2004), p.279.

Google Scholar

[9] R. C. Chang, S. Y. Chu, Y. F. Lin and Y. P. Wong: J. Eur. Cerm. Soc. Vol. 27, (2007), p.4453.

Google Scholar

[10] C. H. Wang: J. Ceram. Soc. Jpn. Vol. 116, (2008), p.632.

Google Scholar

[11] Z. Chen, J. Hu, and X. He : J. Ceram. Soc. Jpn. Vol. 116, (2008), p.661.

Google Scholar

[12] Anon. IRE: Proc. IRE., Vol. 49 (1961), p.1161. Table I. Comparison of properties of NKN ceramics based on the previous reports of various groups. Composition Density (g/cm3) Relative density (%) Dielectric constant kp kt Ref. NKN.

Google Scholar

[4] 34.

Google Scholar

[96] 4.

Google Scholar

98NKN-0. 02BaTiO3.

Google Scholar

[4] 44.

Google Scholar

[98] 4.

Google Scholar

995NKN-0. 005SrTiO3.

Google Scholar

[4] 44.

Google Scholar

[98] 4 412.

Google Scholar

94NKN-0. 06LiNbO3.

Google Scholar

[4] 35.

Google Scholar

[96] 5.

Google Scholar

94NKN-0. 06LiTaO3 -- -- 570.

Google Scholar

36 -- 7.

Google Scholar

995NKN-0. 005CaTiO3.

Google Scholar

[97] 6 553.

Google Scholar

98NKN-0. 02 Ba(Zr0. 04Ti0. 96)O3.

Google Scholar

[4] 28.

Google Scholar

[95] 1 875.

Google Scholar

96(Na0. 5K0. 5)NbO3 –0. 04Bi0. 5(Na0. 85K0. 15)0. 5TiO3.

Google Scholar

[4] 44 1273.

Google Scholar

38 This study Fig. 1: X-ray diffraction (XRD) patterns of (1-x) Fig. 2: Measured density of (1-x)NKN-xBNKT NKN -xBNKT ceramics. ceramics shown as a functions of x composition. Fig. 4: The kpand kt of (1-x)NKN-xBNKT Fig. 5: The KT33 of (1-x)NKN-xBNKT ceramics ceramics shown as functions of x composition. shown as a functions of x composition. (a) x=0. 02 (b) x=0. 03 (c) x=0. 04 (d) x=0. 05 (e) x=0. 06 Fig. 5 : The microstructure of (1-x)NKN-xBNKT ceramics under different compositions: (a) x=0. 02 (b) x=0. 03 (c) x=0. 04 (d) x=0. 05 and (e) x=0. 06. Bar= 10 um.

DOI: 10.3724/sp.j.1077.2012.00385

Google Scholar