The Adsorption Properties of Cu and Ni on the Ceria(111) Surface

Article Preview

Abstract:

First-principles electronic structures calculations of the adsorption properties of Cu and Ni on the ceria(111) surface are presented. The adatoms (Cu, Ni) are adsorbed strongly at the hollow site on the CeO2(111) support. Metal induced gap states (MIGS) appear in the O2p-Ce4f gaps and the Cu and Ni adatoms are oxidized to Cu+ and Ni+ mainly by their next nearest neighbor Ce ion, which experiences a conversion of Ce4+→Ce3+. The bonding mechanisms for the Cu-ceria(111) and Ni-ceria(111) systems are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-171

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Trovarelli, Catalysis Reviews - Science and Engineering, Vol. 38 (1996), p.439.

Google Scholar

[2] X. Wang, J. A. Rodriguez, J. C. Hanson, D. Gamarra, A. Martinez-Arias, M. Fernandez-Garcia, J. Phys. Chem. B, Vol. 110 (2006), p.428.

Google Scholar

[3] T. Zhu, L. Kundakovic, A. Dreher, M. Flytzani-Stephanopoulos, Catal. Today, Vol. 50 (1999), p.381.

Google Scholar

[4] S. Park, J. M. Vohs, R. J. Gorte, Nature, Vol. 404 (2000), p.265.

Google Scholar

[5] Z. Yang, B. He, Z. Lu, K. Hermansson, The Journal of Physical Chemistry C, Vol. 114 (2010), p.4486.

Google Scholar

[6] M. M. Branda, N. C. Hernandez, J. F. Sanz, F. Illas, J. Phys. Chem. C, Vol. 114 (2010), p. (1934).

Google Scholar

[7] W. Shan, M. Luo, P. Ying, W. Shen, C. Li, Applied Catalysis A: General, Vol. 246 (2003), p.1.

Google Scholar

[8] J. B. Wang, Y. -L. Tai, W. -P. Dow, T. -J. Huang, Applied Catalysis A: General, Vol. 218 (2001), p.69.

Google Scholar

[9] Z. Chafi, N. Keghouche, C. Minot, Surface Science, Vol. 601 (2007), p.2323.

Google Scholar

[10] G. Kresse, J. Furthmuller, Phys. Rev. B, Vol. 54 (1996), p.11169.

Google Scholar

[11] P. E. Blöchl, Phys. Rev. B, Vol. 50 (1994), p.17953.

Google Scholar

[12] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B, Vol. 46 (1992), p.6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[13] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B, Vol. 57 (1998), p.1505.

Google Scholar

[14] M. Nolan, S. C. Parker, G. W. Watson, Surf. Sci., Vol. 595 (2005), p.223.

Google Scholar

[15] A. Rohrbach, J. Hafner, G. Kresse, Physical Review B, Vol. 69 (2004), p.075413.

Google Scholar

[16] G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci., Vol. 36 (2006), p.254.

Google Scholar

[17] Z. Yang, Z. Lu, G. Luo, Phys. Rev. B, Vol. 76 (2007), p.075421.

Google Scholar

[18] J. A. Rodriguez, T. Jirsak, L. Gonzalez, J. Evans, M. Perez, A. Maiti, J. Chem. Phys, Vol. 115 (2001), p.10914.

Google Scholar

[19] Z. -P. Liu, S. J. Jenkins, D. A. King, Physical Review Letters, Vol. 94 (2005), p.196102.

Google Scholar