[1]
V. V. Anh, N. N. Lenenko, Non-Gaussian scenarios for the heat equation with singular initial conditions, Stochastic Processes and their Applications. 84(1) (1999), 91-114.
DOI: 10.1016/s0304-4149(99)00053-8
Google Scholar
[2]
V. V. Anh, N. N. Lenenko, Harmmonic analysis of fractional diffusion-wave equations, Applied Math. Comput. 48(3) (2003), 239-252.
Google Scholar
[3]
M. Caputo, The Green function of the diffusion of fluids in porous media with memory, Rend. Fis. Acc. Lincei (ser. 9). 7(1996), 243-250.
DOI: 10.1007/bf03002242
Google Scholar
[4]
R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1(1998), 167-191.
DOI: 10.1007/978-3-0348-8276-7_10
Google Scholar
[5]
R. Hilfer. Exact solutions for a class of fractal time random walk, Fractals 3(1995), 211-216.
DOI: 10.1142/s0218348x95000163
Google Scholar
[6]
F. Liu, V. V. Anh, I. Turner, P. Zhuang, Time Fractional A svection-dispersion Equation, J. Appl. Math & Computing. 13(2003), 233-145.
Google Scholar
[7]
R. Gorenflo, F. Mainardi, D. Moretti, Time fractional diffusion: a discrete random walk approach. J. Non. Dyna. 29(2000), 129-143.
Google Scholar
[8]
F. Huang, F. Liu, The fundameng solution of the space-time fractional advection-dispersion equation. J. Appl. Math. & Comp. 18(2005), 339-350.
Google Scholar
[9]
Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. App. Math. Modeling. 34(2010), 200-218.
DOI: 10.1016/j.apm.2009.04.006
Google Scholar
[10]
M. Ilic, F. Liu, I. Turner, V. Anh. Numerical approximation of a fractional-in-space diffusion equation(II)---with nonhomogeneous boundary conditions. Fractional Calculus and Applied Analysis, 9(4) (2005), 333-346.
Google Scholar
[11]
G. D. Smith. Numerical solution of partial differential equations: finite difference methods, 3nd edition. Oxford: Oxford University Press, (1985).
Google Scholar