Integrated Non Reciprocal Ring Resonators

Article Preview

Abstract:

We present the theoretical concept of an optical isolator based on a resonance splitting in a silicon ring resonators covered by a magneto-optical polymer cladding. A polymer magneto optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. Using a perturbation method it is shown that the resonance splitting of the clockwise and counter-clockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm a 29GHz splitting is demonstrated. An optical isolator is proposed based on a critically coupled ring resonator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

533-538

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Dötsch, et al., J. Opt. Soc. Am. B, 22, 240 (2005).

Google Scholar

[2] H. Dötsch, et al., IEEE Trans. Magn., 28, 2979 (1992).

Google Scholar

[3] J. Fujita, et al., Appl. Phys. Lett., 76, 2158 (2000).

Google Scholar

[4] E. Takeda, et al., J. Appl. Phys., 87, 6782 (2000).

Google Scholar

[5] M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys., 83, 6768 (1998).

Google Scholar

[6] N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, Opt. Express, 15, 7737 (2007).

Google Scholar

[7] Z. Wang and S. Fan, Opt. Lett., 30, 1989 (2005).

Google Scholar

[8] W. Smigaj, et al., Opt. Lett., 35, 568 (2010).

Google Scholar

[9] P. Gangopadhyay, et al., Proc. SPIE, 6331, 63310Z (2006).

Google Scholar

[10] G. Koeckelberghs, et al., Macromolecular Rapid Communications, 27, 1920 (2006).

Google Scholar

[11] P. Gangopadhyay, et al., J. Phys. Chem. C, 112, 8032 (2008).

Google Scholar

[12] F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, Appl. Phys. Express, 2, 011501 (2009).

Google Scholar

[13] A. Petrov, et al., in 7th International Conference on Group IV Photonics (GFP) (Beijing, 2010)(Paper P2. 4).

Google Scholar

[14] S. Fan and Z. Wang, J. Magn. Soc. Jpn., 30, 641 (2006).

Google Scholar

[15] V. Subramaniam, et al., J. Lightwave Technol., 15, 990 (1997).

Google Scholar

[16] H. Piller and R. F. Potter, Phys. Rev. Lett., 9, 203 (1962).

Google Scholar

[17] J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electronics Letters, 20, 906 (1984).

Google Scholar

[18] www. cst. com.

Google Scholar

[19] M. Krause, et al., IEEE J. Sel. Top. Quantum Electron., 12, 1359 (2006).

Google Scholar

[20] Y. Vlasov and S. McNab, Opt. Express, 12, 1622 (2004).

Google Scholar

[21] Q. Xu, D. Fattal, and R. G. Beausoleil, Opt. Express, 16, 4309 (2008).

Google Scholar

[22] A. Yariv, Electron. Lett., 36, 321 (2000).

Google Scholar