[1]
Guckenheimer, J. and Holmes, P. Dynamical systems and bifurcations of vector fields. New York: Springer-Verlag; (1997).
Google Scholar
[2]
Jing, Z.J. and Wang, R.Q. Complex dynamics in Duffing system with two external forcings. Chaos, Solitons and Fractals, 2005, 23: 399-411.
DOI: 10.1016/j.chaos.2004.02.022
Google Scholar
[3]
Kapitaniak, T. Analytical condition for chaotic behavior of the Duffing oscillation. Phys Lett A, 1990, 144(6, 7): 322-324.
Google Scholar
[4]
Wakako, M., Chieko, M., Koi-ichi, H., Yoshi, H.I. Integrable Duffing's maps and solutions of the Duffing equation. Chaos, Solitons and Fractals, 2003, 15(3): 425-443.
DOI: 10.1016/s0960-0779(02)00089-9
Google Scholar
[5]
Yagasaki, K. Homoclinic tangles, phase locking, and chaos in a two frequency perturbation of Duffing's equation. J. Nonlinear Sci, 1999, 9: 131-148.
DOI: 10.1007/s003329900066
Google Scholar
[6]
Yagasaki K. Second-order averaging and chaos in quasi-periodically forced weakly nonlinear oscillators. Physica D 1990; 44: 445-458.
DOI: 10.1016/0167-2789(90)90157-k
Google Scholar
[7]
Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos. New York: Springer; (1990).
Google Scholar