[1]
Chacon R, Bejarano JD. Homoclinic and heteroclinic chaos in a triple-well oscillator. Journal of Sound and Vibration 1995; 186(2): 269-278.
DOI: 10.1006/jsvi.1995.0448
Google Scholar
[2]
Guckenheimer J, Homel P. Nonlinear oscillations, Dynamical System, and Bifurcation of Vector Fields. Springer-Verlag, (1992).
Google Scholar
[3]
Holmes P, Whitley D. On the attacting set for Duffing's equation. Physicia D. 1983: 111-123.
Google Scholar
[4]
Jing ZJ, Wang RQ. Complex dynamics in Duffing system with two external forcings. Chaos, Solitons and Fractals 2005; 23: 399-411.
DOI: 10.1016/j.chaos.2004.02.022
Google Scholar
[5]
Li GX, Moon FC. Criteria for chaos of a three-well potential oscillator with homoclinic and heteroclinic orbits. Journal of Sound and Vibration 1990; 136(1): 17-34.
DOI: 10.1016/0022-460x(90)90934-r
Google Scholar
[6]
Li W, Xu W, Zhao JF, Ma SJ. Stochastic optimal control of first-passage failure for coupled Duffing-Van der pol system under Gaussian white noise excitations. Chaos, Solitons and Fractals 2005; 25: 1221-1228.
DOI: 10.1016/j.chaos.2004.11.066
Google Scholar
[7]
Parlitz V, Lauterborn W. Supersturcture in the bifurcation set of the Duffing equation. Physics Letters A 1985; 107: 351-355.
DOI: 10.1016/0375-9601(85)90687-5
Google Scholar
[8]
Rajasekar S, Murali K. Resonance behaviors and jump phenomena in a two coupled Duffing-Van der pol oscillators. Chaos, Solitons and Fractals 2004; 19: 925-934.
DOI: 10.1016/s0960-0779(03)00277-7
Google Scholar
[9]
Souza SLTde, Caldas IL, Viana RL, Baathazar JM, Brasil RMLRF. Basins of attraction changes by amplitude constraining of oscillators with limited power supply. Chaos, Solitons and Fractals 2005; 26: 1211-1220.
DOI: 10.1016/j.chaos.2005.02.039
Google Scholar
[10]
Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. New York, Springer-Verlag, (1990).
Google Scholar