Radiative Transitions and Optical Behaviors in Tm3+ Doped Mixed Alkali/Alkaline-Earth Modified Heavy-Metal Gallate Glasses

Article Preview

Abstract:

Efficient ~1.48 and ~1.8mm infrared emissions have been recorded in Tm3+ doped mixed alkali/alkaline-earth modified heavy-metal gallate glasses (LKBPBG) with low phonon energy under 793nm excitation. Judd-Ofelt parameters W2 (4.34´10-20cm2), W4 (9.74´10-21cm2) and W6 (1.00´10-20cm2) indicate a higher asymmetric and stronger covalent environment in the glass material. The spontaneous transition probability and maximum emission cross-section of 3H43F4 transition are derived to be 283s-1 and 2.90´10-21cm2. The maximum emission cross-section of 3F43H6 transition is calculated to be 6.82´10-21cm2, and the ideal net gain coefficients at 1.675 (U-band edge) and 1.872mm are given to be 0.56 and 3.51dB/cm, respectively, as the population inversion equals 1.0, which provide a theoretical anticipation in developing U-band amplifiers and eye-safe medical lasers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

787-792

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Doualan, S. Girard, H. Haquin, J.L. Adam and J. Montagne: Opt. Mater. Vol. 24 (2003), p.563.

Google Scholar

[2] R. Balda, L.M. Lacha, J. Fernández and J.M. Fernández-Navarro: Opt. Mater. Vol. 27 (2005), p.1771.

Google Scholar

[3] B.M. Walsh, N.P. Barnes, D.J. Reichle and S. Jiang: J. Non-Cryst. Solids Vol. 352 (2006), p.5344.

Google Scholar

[4] M. Naftaly, S. Shen and A. Jha: Appl. Opt. Vol. 39 (2000), P. 4979.

Google Scholar

[5] B. Faure, W. Blanc, B. Dussardier and G. Monnom: J. Non-Cryst. Solids Vol. 353 (2007), P. 2767.

Google Scholar

[6] A. Kermaoui and F. Pelle: J. Alloys Compd. Vol. 469 (2009), p.601.

Google Scholar

[7] B.G. Aitken, M.J. Dejneka and M.L. Powley: J. Non-Cryst. Solids Vol. 349 (2004), p.115.

Google Scholar

[8] S.L. Yu, Z.M. Yang and S.H. Xu: Opt. Mater. Vol. 31 (2009), p.1723.

Google Scholar

[9] X.S. Wang, Q.H. Nie, T.F. Xu, X. Shen, S.X. Dai, N. Gai and Y. Zhou: Spectrochim. Acta Pt. A Vol 72 (2009), p.543.

Google Scholar

[10] X.L. Liang, S.L. Yuan, Y.X. Yang and G.R. Chen: J. Lumin. Vol. 130 (2010), p.429.

Google Scholar

[11] S.L. Zhao, S.Q. Xu, D.G. Deng, H.P. Wang, L.H. Huang and X.P. Fan: Chem. Phys. Lett. Vol. 494 (2010), 202.

Google Scholar

[12] S. Tanabe, K. Tamai, Hirao and N. Soga: Phys. Rev. B Vol. 47 (1993), p.2507.

Google Scholar

[13] D.C. Zhou, Z.G. Song, G.W. Chi and J.B. Qiu: J. Alloy Compd. Vol. 481 (2009), p.881.

Google Scholar

[14] H.P. Xia, Q.F. Lin, J.L. Zhang and Q.Y. Zhang: J. Rare Earths Vol. 27 (2009), p.781.

Google Scholar

[15] D.M. Shi, Q.Y. Zhang, G.F. Yang and Z.H. Jiang: J. Non-Cryst. Solids Vol. 353 (2007), p.1508.

Google Scholar

[16] M.A. Villegas and J.M. Fernndez Navarro: J. Eu. Cera. Soc. Vol. 27 (2007), p.2715.

Google Scholar

[17] B. Peng and T. Izumitani: Opt. Mater. Vol. 4 (1995), p.797.

Google Scholar

[18] S.Q. Man, S.F. Wong, E.Y. Pun and P.S. Chung: J. Opt. Soc. Am. B Vol. 21 (2004), p.313.

Google Scholar

[19] H. Kalaycioglu, H. Cankaya, M.N. Cimeciyan, A. Sennaroglu and G. Ozen: J. Lumin. Vol. 128 (2008), p.1501.

Google Scholar

[20] H.Y. Fan, G.J. Gao, G.N. Wang, J.J. Hu and L.L. Hu: Opt. Mater. Vol. 32 (2010), p.627.

Google Scholar