[1]
B. Illic, D. Czaplewki, H.G. Craighead, P. Neuzal, C. Campagnolo and C. Batt, Mechanical resonant immunospecific biological detector, Applied Physics Letters, 77, (2000), pp.450-452.
DOI: 10.1063/1.127006
Google Scholar
[2]
T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D. Rugar, Attonewton force detection using silicon cantilevers. Applied Physics Letters, 71, (1997), pp.288-290.
DOI: 10.1063/1.119522
Google Scholar
[3]
T. Kenny, Nanometer-scale force sensing with MEMS devices. IEEE Sensors Journal, 1, (2001), pp.148-157.
DOI: 10.1109/jsen.2001.936932
Google Scholar
[4]
D. Rugar, C.S. Yannoni, and J.A. Sidles, Mechanical detection of magnetic resonance, Nature, 360, (1992), pp.563-566.
DOI: 10.1038/360563a0
Google Scholar
[5]
E. Ott, C. Grebogi, and J.A. Yorque, Controlling Chaos, Phys. Rev. Lett. 66, (1990), p.1196.
Google Scholar
[6]
S.C. Sinhá, J.T. Henrichs, and B.A. Ravindra, A General Approach in the Design of active Controllers for Nonlinear Systems Exhibiting Chaos. Int. J. Bifur. Chaos, 10-1, (2000), p.165.
DOI: 10.1142/s0218127400000104
Google Scholar
[7]
J. Rhoads, S. Shaw, K. Turner, and R. Baskaran, Tunable MEMS filters that exploit parametric resonance, J. Vib. And Acoust., 127-5, (2004), pp.423-430.
DOI: 10.1115/1.2013301
Google Scholar
[8]
J. Rhoads, S. Shaw, K. Tunner, J. Moehlis, B. DeMartini, and W. Zhang, Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators, J. sound and Vib., 296, (2006), pp.797-829.
DOI: 10.1016/j.jsv.2006.03.009
Google Scholar
[9]
K. Tuner, S. Miller, P. Harwell, N. MacDonald, S. Strogatz, and S. Adams, Five parametric resonances in a microelectromechanical system, Nature, 396, (1998), pp.149-152.
DOI: 10.1038/24122
Google Scholar
[10]
B.E. DeMartini, H.E. Butterfield, J. Moehlis, and K.L. Turner, Prediction and Validation of chaotic behavior in a eletrcostatically actuted Microelectromechanical oscillator., in: Proceeding of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, (2007).
DOI: 10.1109/sensor.2007.4300478
Google Scholar
[11]
W. Zhang, R., Baskaran, and K. Tunner, Effect of nonlinearity on auto-parametrically amplified resonant MEMS mass sensor, Sens. And Act. A-Phys., 103: 1-2, (2002) pp.139-150.
DOI: 10.1016/s0924-4247(02)00299-6
Google Scholar
[12]
W. Zhang, K. Turner, P. Harwell, In: SCREAM'03: A single mask process for high-Q single crystal silicon MEMS., ASME Intnl. Mech Eng. Congr. On Sens, Vienna, Austria, (2004), pp.24-27.
DOI: 10.1115/imece2004-61140
Google Scholar
[13]
M. Rafikov and J. M. Balthazar, On control and synchronization in chaotic and hyperchaotic systems. Communications in Nonlinear Science & Numerical Simulation, 13, (2008), pp.1246-1255.
DOI: 10.1016/j.cnsns.2006.12.011
Google Scholar
[14]
F.R. Chavarette, J.M. Balthazar, N.J. Peruzzi, and M. Rafikov, On Non-Linear Dynamics and Control Designs Applied to the FitzHugh-Nagumo (FN) Mathematical Model (Ideal and Non-Ideal Cases). International Journal of Nonlinear Sciences and Numerical Simulation, USA, 14, (2009).
DOI: 10.1016/j.cnsns.2007.10.016
Google Scholar
[15]
F.R. Chavarette, J.M. Balthazar, and J.L.P. Felix, A Reducing of a Chaotic Movement to a Periodic Orbit, of a Micro -Electro-Mechanical System, by Using an Optimal Linear Control Design. Journal Of Computation And Nonlinear Dynamics, 14, (2009).
DOI: 10.1016/j.cnsns.2008.09.003
Google Scholar
[16]
K. Ogata, Engenharia de Controle Moderno. São Paulo: Pearson Prentice Hall, (2003), p.788.
Google Scholar