Ab Inito Study of Absorption Spectra in Ultra Small Diameter Single Walled Boron Nanotubes

Article Preview

Abstract:

We have investigated the absorption spectra in ultra small diameter single walled boron nanotubes for parallel and perpendicular polarized light as well as unpolarized light. In this paper we have studied absorption spectra for armchair (3,3),zigzag (5,0) and chiral (4,2) boron nanotubes containing 12, 20 and 56 atoms respectively. It is observed that absorption is highest for armchair followed by zigzag and chiral nanotubes. It is also found that absorption is higher for (3,3) and (5,0) nanotubes for perpendicular polarized light as compared to parallel polarized light, whereas chiral nanotube shows higher and wide range of absorption for parallel polarized light instead of perpendicular polarized light. We have compared our results with SWCNT and SWBNNT of same chiral vectors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

16-20

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[9] A.B. Dalton, S. Collins, E. Munõz, J. M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Colemean, B.G. KIM, R.H. Baughman: Nature 423, 708 (2003).

Google Scholar

[10] A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan : Nature 424, 171 (2003).

Google Scholar

[11] J.M. Bonard, T. Stöckly, F. Maier, W.A. de Heer, A. Châtelain, J.P. Salvetat, L. Forró: Phys. Rev. Lett. 81, 1441 (1998).

DOI: 10.1103/physrevlett.81.1441

Google Scholar

[12] A.M. Fennimore, T.D. Yuzvinsky, W. Q Han, M.S. Fuhrer, J. Cumings, A. Zettl: Nature 424, 408 (2003).

DOI: 10.1038/nature01823

Google Scholar

[13] A.G. Marinopoulos, L. Wirtz ,A. Marini, V. Olevano, A. Rubio, L. Reining, Appl. Phys. A 78 (2004) 1157.

DOI: 10.1007/s00339-003-2467-z

Google Scholar

[14] Y. Mao, J. Zhong, Y. Chen: First principles study of the band structure and dielectric function of (6, 6) single-walled zinc oxide nanotube, Physica E 40 (2008) 499-502.

DOI: 10.1016/j.physe.2007.07.008

Google Scholar

[15] D. Jana, L.C. Chen, C. W. Chen, S. Chattopadhyay and K.H. Chen, Carbon45 (2007) 1482.

Google Scholar

[16] H. Pan, Y. P. Feng, J. Y. Lin, First-principles study of optical spectra of single-wall BC2N nanotubes. Phys. Rev. B, v. 73, p.035420-[6pages], (2006).

Google Scholar

[17] M. Machon,S. Reich, C. Thomsen, D. Sanchez-Portal, P. Ordejon: Ab initio calculations of the optical properties of 4-Å-diameter single walled nanotubes. Phys Rev B 2002; 66: 155410-5.

DOI: 10.1103/physrevb.66.155410

Google Scholar

[18] X.P. Yang H.M. Weng , J. Dong : Optical properties of 4Å single-walled carbon nanotubes inside zeolite channels studied from first principles calculations. Euro Phys J B 2003; 32: 345-50.

DOI: 10.1140/epjb/e2003-00108-5

Google Scholar

[19] H.J. Liu , C.T. Chan: Properties of 4 Å carbon nanotubes from first-principles calculations. Phys Rev B 2002; 66: 115416-20.

Google Scholar

[20] Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G. D. Li ,J. S. Chen, N. Nagasawa, and S. Tsuda, Phys. Rev. Lett. 87, 127401 (2001).

Google Scholar

[21] M.C. Payne M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992; 64: 1045-1097.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[22] S.J. Clark M.D. Segall C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Rafson, S.J. Clark M.C. Payne. First–rinciples Methods Using CASTEP. Zeitschrift feur Kristallographie 220 (5-6) pp.567-570 (2005).

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[23] D. Vanderbilt, Phys Rev. B 41, R7892 (1990).

Google Scholar

[24] H.J. Monkhorst, J.D. Pack: Special points for Brillouin-zone integrations. Phys rev B 1992; 13: 5188-92.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[25] J.P. Perdew , K. Berke, M. Ernzerhof: Generalized gradient approximation made simple. Phys Rev Lett 1996; 77: 3865-8.

DOI: 10.1103/physrevlett.77.3865

Google Scholar