Preparations Effects on Amorphous/Nanocrystal Ni-Mo Alloys Structure and Properties

Article Preview

Abstract:

Ni-Mo alloys have been studied as a prospected cathode for its higher hydrogen evolution reaction properties than other binary compounds. The eletrodeposition parameters and its effects have been investigated in forming Ni-Mo alloys in the present study by measuring the structure and properties of deposits. The forming mechanism of Ni-Mo amorphous deposit is discussed from point of the elements component of view. The X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) microstructures show that the molybdenum content in the deposit is increased with the molybdate concentration increase, and the deposit structure can be parted several stages- nanocrystal, nanocrystal/amorphous, amorphous, crystalline, or the mixed configuration due to the variation of Mo atom content. The forming mechanism of the deposit of Ni-Mo alloys is attributable to the repulsive aggradations as of the molybdenum chemical properties and electronic shell structure. When the atom rate of Ni/Mo is higher than 0.35, the deposit is the face center cubic (fcc) configuration, while lower than 0.35, the deposit is the monoclinic hexagon crystalloid configuration or body center cubic (bcc) dimensional structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

21-26

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liu M.Y., Yu B., Xu J.M., Chen J. Power Sources, vol. 183(2008), p.708.

Google Scholar

[2] Veziroğlu T. Nejat, Şahi˙n Sümer. Energy Conversion and Management, vol. 49(2008), p.1820.

Google Scholar

[3] Krstajić N.V., Jović V.D., Gajić-Krstajić Lj., Jović B.M., Antozzi A.L., Martelli G.N., Hydrogen Energy, vol. 33(2008), p.3676.

DOI: 10.1016/j.ijhydene.2015.06.127

Google Scholar

[4] Navarro-Flores Elisa, Zhiwen Chong, Omanovic Sasha. Molecular Catalysis A: Chemical, vol. 226(2005), p.179.

Google Scholar

[5] Jović B.M., Jović V.D., Maksimović V.M., Pavlović M.G., Electrochimica Acta, vol. 53(2008), p.4796.

DOI: 10.1016/j.electacta.2008.02.004

Google Scholar

[6] Wang Y., Woodward C., Zhou S.H., Liu Z.K., ChenL.Q. Scripta Materialia, vol. 52(2005), p.17.

Google Scholar

[7] Zhou S.H., Wang Y., Jiang C., Zhu J.Z., Chen L.Q., Liu Z.K. Materials Science and Engineering A: vol. 397(2005), p.288.

Google Scholar

[8] Kim. J. J., Choi. Y., Surech. S., Argon A.S., Science, vol. 295(2002), p.654.

Google Scholar

[9] Schuh C.A., Lund A.C., Nieh T.G. Acta Mater, vol. 52(2004), p.5879.

Google Scholar

[10] Goswami G.L., Kumar S., Galun R.,. Lasers Eng. vol. 13(2003), p.1.

Google Scholar

[11] De la Torre S.D., Oleszak D., Kakitsuji A., Miyamoto K., Miyamoto H., Martínez-S R., Almeraya-C F., Martínez-V A., Rios J.D. Materials Science and Engineering A: vol. 276(2000), p.226.

DOI: 10.1016/s0921-5093(99)00156-2

Google Scholar

[12] Kedzierzawski P., Oleszak D., Janik-Czachor M. Materials Science and Engineering A: vol. 300(2001), p.105.

Google Scholar

[13] Oleszak D., Kolesnikov D., Kulik T. Materials Science and Engineering A: vol. 449-451(2007), p.1127.

Google Scholar

[14] Sanches Luciana S., Domingues Sergio H., Marino Claudia E. B., Mascaro Lucia H. Electrochemistry Communications, vol. 6(2004), p.543.

Google Scholar

[15] Shunsuke Yagi, Akira Kawakami, Kuniaki Murase, Yasuhiro Awakura. Electrochimica Acta, vol. 52(2007), p.6041.

Google Scholar

[16] Alexis Damian, Sasha Omanovic. Power Sources, vol. 158(2006), p.464.

Google Scholar

[17] Ramachandran A., Tharamani C.N., Mayanna S.M. Trans. Inst. Met. Finish. vol. 79(2001), p.195.

Google Scholar

[18] Stasov A.A., Pasechnik S. Ya., Izv. Vyssh Ucheb Zaved. Ser. Chem. And Chem. Technol, vol. 1973, 16, 600.

Google Scholar

[19] Jović V.D., Jović B.M. Electroanal. Chem., vol. 541(2003), p.1.

Google Scholar

[20] Gaidelene J., Kalendarev R., Kuzmin A., Purans J. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 531(2004), p.321.

DOI: 10.1016/j.nima.2004.06.023

Google Scholar