Band Bending of n-GaP(001) and p-InP(001) Surfaces with and without Sulfur Treatment Studied by Photoemission (PES) and Inverse Photoemission Spectroscopy (IPES)

Article Preview

Abstract:

Surface electronic structures of n-GaP(001) and p-InP(001) with and without sulfur treatment have been studied by X-ray photoelectron spectroscopy (XPS), synchrotron radiation photoemission spectroscopy (SRPES), and inverse photoemission spectroscopy (IPES). The Fermi level (EF) of a clean n-GaP(001)-(2x4) surface is found to be pinned at 0.2 eV above the valence band maximum (VBM), suggesting that the surface electronic bands are bent upward. XPS spectra reveal that the EF is moved to 2.3 eV above the VBM by the sulfur treatment, implying that the sulfur-treated surface has flat bands. The IPES result shows that empty dangling bond states on Ga atoms at the surface are located at the conduction band minimum (CBM) and they disappeared with the treatment. SRPES spectra of a clean p-InP(001)-(2x4) surface indicate that the EF is located at 0.3 eV above the VBM and surface states due to phosphorus atoms are at –0.9 eV below the EF. The result implies that the surface has almost flat bands. Empty dangling bond states on In atoms at the clean surface are found to be located at the conduction band edge. Surface states due to the In-S bonds are found at –3.5 eV below the EF for the sulfur-treated surface. The sulfur treatment of the clean surface leads to a little shift (0.1 –0.2 eV) of the EF and to considerable reduction of the empty states in the band gap. A type conversion of p- to n- is not observed in the present work. This is discussed in terms of the thickness of a sulfide layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-61

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Mönch: Semiconductor Surfaces and Interfaces, (Springer-Verlag, Berlin, Heiderberg, 2001).

Google Scholar

[2] For example, C. J. Sandroff, R.N. Nottenburg, J. –C. Bischoff and R. Bhat: Appl. Phys. Lett. Vol. 51 (1987), p.33.

Google Scholar

[3] H. Oigawa, J. Fan, Y. Nannichi, H. Sugahara and M. Oshima: Jpn. J. Appl. Phys. Vol. 30 (1991), p. L322.

Google Scholar

[4] H. Hirayama, Y. Matsumoto, H. Oigaa and Y. Nannichi: Appl. Phys. Lett. Vol. 54 (1989), p.2565.

Google Scholar

[5] M. Tanimoto, H. Yokoyama, M. Shinohara and N. Inoue: Jpn. J. Appl. Phys. Vol. 33 (1994), p. L279.

Google Scholar

[6] M. Shimomura, N. Sanada, S. Ichikawa, Y. Fukuda, M. Nagoshi and P. J. Møller: J. Appl. Phys. Vol. 83 (1998), p.3071.

Google Scholar

[7] N. Sanada, M. Shimomura, Y. Fukuda and T. Sato: Appl. Phys. Lett., Vol. 67 (1995), p.1432.

Google Scholar

[8] M. Katayama, M. Aono, H. Oigawa and Y. Nannichi: Jpn. J. Appl. Phys. Vol. 30 (1991), p. L786.

Google Scholar

[9] Y. Fukuda, Y. Suzuki, N. Sanada, M. Shimomura and S. Masuda: Phys. Rev. B Vol. 56 (1997), p.1084.

Google Scholar

[10] S. Ichikawa, Y. Suzuki, N. Sanada, N. Utsumi, T. Yamaguchi, X.Y. Gong and Y. Fukuda: J. Vac. Sci. Technol. A Vol. 17 (1999), p.421.

Google Scholar

[11] I. M. Vitomirov, A. Raisanen and L. J. Brillson, J. Vac. Sci. Technol. A Vol. 11 (1993), p.841.

Google Scholar

[12] A. J. Nelson, S. Frigo and R. Rosenberg: Appl. Phys. Lett., Vol. 71 (1992), p.6086.

Google Scholar

[13] R. W. M. Kwok and W. M. Lau: J. Vac. Sci. Technol. A Vol. 10 (1992), p.2515.

Google Scholar

[14] N. Sanada, M. Shimomura and Y. Fukuda: Rev. Sci. Instrum. Vol. 64 (1993), p.3480.

Google Scholar

[15] J. van Laar, A. Huijser and T. L. van Rooy: J. Vac. Sci. Technol. Vol. 14 (1977), p.894.

Google Scholar

[16] Y. Fukuda, M. Shimomura, N. Sanada andM. Nagoshi: J. Appl. Phys., Vol. 76 (1994), p.3632.

Google Scholar

[17] S. –F. Ren and Y. –C. Chang: Phys. Rev. B Vol. 44 (1991), p.13573.

Google Scholar

[18] X. Hou, G. Dong, X. Ding and X. Wang: J. Phys. C Vol. 20 (1987), p. L121.

Google Scholar

[19] F. Lodders, J. Westhof, J. A. Schaefer, H. Höpfinger, A. Goldmann and S. Witzel: Z. Phys., B Vol. 83 (1991), p.263.

Google Scholar

[20] T. Ohno: Surf. Sci. Vol. 255 (1991), p.229.

Google Scholar

[21] M. Shimomura, K. Naka, S. Sanada, Y. Suzuki, Y. Fukuda and P.J. Möller, J. Appl. Phys. Vol. 79 (1996), p.4193.

Google Scholar

[22] S. Riese, E. Milas and H. Merz: Surf. Sci., Vol. 269-270 (1992), p.833.

Google Scholar

[23] W. M. Lau, S. Jin, X. –W. Wu and S. Ingrey: J. Vac. Sci. Technol., B Vol. 8 (1990), p.848.

Google Scholar

[24] W. M. Lau, S. Jin, X. –W. Wu and S. Ingrey: J. Vac. Sci. Technol., A Vol. 9 (1991), p.994.

Google Scholar

[25] R. W. M. Kwok and W. M. Lau: J. Vac. Sci. Technol. A Vol. 10 (1992), p.2515.

Google Scholar

[26] P. Chiaradia, M. Fanfoni, P. Nataletti, P. De Padova, L. J. Brillson, M. L. Slade, R.E. Viturro, D. Kilday and G. Margaritondo: Phys. Rev. B Vol. 39 (1989), p.5128.

DOI: 10.1103/physrevb.39.5128

Google Scholar